On tracking the motion of rigid bodies through edge detection and least-squares fitting

On tracking the motion of rigid bodies through edge detection and least-squares fitting A class of techniques is investigated for determining at least three components (two translational and one rotational) of the motion of a rigid body from silhouette images, with particular emphasis on motion within a fluid. The investigated techniques all employ edge detection followed by some form of least-squares fitting to the detected points in determining the movement of the body. Four techniques are discussed and, through both an artificial image analysis and calibrated sphere measurements, are shown to be capable of measuring displacements down to a few thousandths of a pixel under low image-noise conditions ( $$\lesssim2\%$$ ). Measurements of two configurations in a high-enthalpy shock tunnel demonstrate the capabilities of the techniques under experimental conditions. In particular, a technique referred to as edge-tracking is introduced, which can be employed in situations where the model profile is unknown and/or only some fraction of it is visible. This latter quality is especially useful for measurements in high-enthalpy facilities, where test-gas luminosity can obscure a significant extent of the model outline. A further advantage of this technique is that, even for complex geometries, the fitting procedure can typically be reduced to solving a sequence of linear least-squares problems, rather than a nonlinear one, with a corresponding benefit in computational efficiency. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On tracking the motion of rigid bodies through edge detection and least-squares fitting

Loading next page...
 
/lp/springer_journal/on-tracking-the-motion-of-rigid-bodies-through-edge-detection-and-FVvbFaDyDJ
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1228-6
Publisher site
See Article on Publisher Site

Abstract

A class of techniques is investigated for determining at least three components (two translational and one rotational) of the motion of a rigid body from silhouette images, with particular emphasis on motion within a fluid. The investigated techniques all employ edge detection followed by some form of least-squares fitting to the detected points in determining the movement of the body. Four techniques are discussed and, through both an artificial image analysis and calibrated sphere measurements, are shown to be capable of measuring displacements down to a few thousandths of a pixel under low image-noise conditions ( $$\lesssim2\%$$ ). Measurements of two configurations in a high-enthalpy shock tunnel demonstrate the capabilities of the techniques under experimental conditions. In particular, a technique referred to as edge-tracking is introduced, which can be employed in situations where the model profile is unknown and/or only some fraction of it is visible. This latter quality is especially useful for measurements in high-enthalpy facilities, where test-gas luminosity can obscure a significant extent of the model outline. A further advantage of this technique is that, even for complex geometries, the fitting procedure can typically be reduced to solving a sequence of linear least-squares problems, rather than a nonlinear one, with a corresponding benefit in computational efficiency.

Journal

Experiments in FluidsSpringer Journals

Published: Nov 24, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off