On the Use of Random Set Theory to Bracket the Results of Monte Carlo Simulations

On the Use of Random Set Theory to Bracket the Results of Monte Carlo Simulations Based on Random Set Theory, procedures are presented for bracketing the results of Monte Carlo simulations in two notable cases: (i) the calculation of the entire distribution of the dependent variable; (ii) the calculation of the CDF of a particular value of the dependent variable (e.g. reliability analyses). The presented procedures are not intrusive in that they can be equally applied when the functional relationship between the dependent variable and independent variables is known analytically and when it is a complex computer model (black box). Also, the proposed procedures can handle probabilistic (with any type of input joint PDF), interval-valued, set-valued, and random set-valued input information, as well as any combination thereof. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

On the Use of Random Set Theory to Bracket the Results of Monte Carlo Simulations

Loading next page...
 
/lp/springer_journal/on-the-use-of-random-set-theory-to-bracket-the-results-of-monte-carlo-m0QrMRlb0s
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/B:REOM.0000015849.35108.9c
Publisher site
See Article on Publisher Site

Abstract

Based on Random Set Theory, procedures are presented for bracketing the results of Monte Carlo simulations in two notable cases: (i) the calculation of the entire distribution of the dependent variable; (ii) the calculation of the CDF of a particular value of the dependent variable (e.g. reliability analyses). The presented procedures are not intrusive in that they can be equally applied when the functional relationship between the dependent variable and independent variables is known analytically and when it is a complex computer model (black box). Also, the proposed procedures can handle probabilistic (with any type of input joint PDF), interval-valued, set-valued, and random set-valued input information, as well as any combination thereof.

Journal

Reliable ComputingSpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off