On the transport of water masses by long-period waves in seas and oceans

On the transport of water masses by long-period waves in seas and oceans Parallel with the traditional hypotheses on the predominantly wind (Ekman), gradient, and thermohaline nature of large-scale currents in seas and oceans, there exist hypotheses on the participation of long-period waves in the formation of these currents. As the physical mechanisms of generation of currents by waves, one can mention nonlinear wave transport and the phenomenon of negative viscosity in waves. From the viewpoint of existence of these mechanisms, numerous scientists explain high velocities of jet currents and their stable character. The predominant role of winds and thermohaline processes in the formation of large-scale currents is also accepted. On the basis of the experimental data, we demonstrate additional possibilities for the formation of large-scale currents given by the transport of water masses by long-period waves. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

On the transport of water masses by long-period waves in seas and oceans

Loading next page...
 
/lp/springer_journal/on-the-transport-of-water-masses-by-long-period-waves-in-seas-and-JS9ty0kabY
Publisher
Kluwer Academic Publishers-Consultants Bureau
Copyright
Copyright © 2004 by Springer Science+Business Media, Inc.
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/s11110-005-0008-3
Publisher site
See Article on Publisher Site

Abstract

Parallel with the traditional hypotheses on the predominantly wind (Ekman), gradient, and thermohaline nature of large-scale currents in seas and oceans, there exist hypotheses on the participation of long-period waves in the formation of these currents. As the physical mechanisms of generation of currents by waves, one can mention nonlinear wave transport and the phenomenon of negative viscosity in waves. From the viewpoint of existence of these mechanisms, numerous scientists explain high velocities of jet currents and their stable character. The predominant role of winds and thermohaline processes in the formation of large-scale currents is also accepted. On the basis of the experimental data, we demonstrate additional possibilities for the formation of large-scale currents given by the transport of water masses by long-period waves.

Journal

Physical OceanographySpringer Journals

Published: Mar 15, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off