On the three-dimensional precessing jet flow past a sudden expansion

On the three-dimensional precessing jet flow past a sudden expansion A circular jet flow past an abrupt expansion under some conditions switches intermittently between two states: quasi-axisymmetric expansion and gyroscopic-like precessing motion. In this work, an experimental investigation into the self-excited precessing flow generated by a 5:1 expansion of a round jet in a coaxial cylindrical chamber is carried out by means of tomographic particle image velocimetry. The experiments are performed on a jet issued from a short pipe at a Reynolds number equal to 150,000. Proper orthogonal decomposition (POD) is applied to extract information on the organization of the large coherent structures of the precessing motion. The application of this technique highlights the dominance of three modes: the most energetic two are associated with the jet precession; the third one is representative of the axial motion. An estimate of the precession probability based on the modal energy obtained from the application of POD is proposed. The precession frequency is extracted using a low-order reconstruction (LOR) of a subset of the POD modes. The reconstructed flow field topology obtained by the LOR highlights an underlying mechanism of swirl generation in proximity of the inlet nozzle; the phenomenon is closely related to the interaction between the entrainment in the far field and the recirculation regions in the near field. The application of a stability criterion shows that the self-induced swirl flow results to be unstable. The instability is responsible for the generation of helical-shaped vortices in the near field, even though the dominant feature for the unconfined jet issued from the same nozzle is the axisymmetric ring-vortices generation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On the three-dimensional precessing jet flow past a sudden expansion

Loading next page...
 
/lp/springer_journal/on-the-three-dimensional-precessing-jet-flow-past-a-sudden-expansion-nzw0fZsdSR
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-014-1677-9
Publisher site
See Article on Publisher Site

Abstract

A circular jet flow past an abrupt expansion under some conditions switches intermittently between two states: quasi-axisymmetric expansion and gyroscopic-like precessing motion. In this work, an experimental investigation into the self-excited precessing flow generated by a 5:1 expansion of a round jet in a coaxial cylindrical chamber is carried out by means of tomographic particle image velocimetry. The experiments are performed on a jet issued from a short pipe at a Reynolds number equal to 150,000. Proper orthogonal decomposition (POD) is applied to extract information on the organization of the large coherent structures of the precessing motion. The application of this technique highlights the dominance of three modes: the most energetic two are associated with the jet precession; the third one is representative of the axial motion. An estimate of the precession probability based on the modal energy obtained from the application of POD is proposed. The precession frequency is extracted using a low-order reconstruction (LOR) of a subset of the POD modes. The reconstructed flow field topology obtained by the LOR highlights an underlying mechanism of swirl generation in proximity of the inlet nozzle; the phenomenon is closely related to the interaction between the entrainment in the far field and the recirculation regions in the near field. The application of a stability criterion shows that the self-induced swirl flow results to be unstable. The instability is responsible for the generation of helical-shaped vortices in the near field, even though the dominant feature for the unconfined jet issued from the same nozzle is the axisymmetric ring-vortices generation.

Journal

Experiments in FluidsSpringer Journals

Published: Feb 4, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off