On the Smoothness of Paging Algorithms

On the Smoothness of Paging Algorithms We study the smoothness of paging algorithms. How much can the number of page faults increase due to a perturbation of the request sequence? We call a paging algorithm smooth if the maximal increase in page faults is proportional to the number of changes in the request sequence. We also introduce quantitative smoothness notions that measure the smoothness of an algorithm. We derive lower and upper bounds on the smoothness of deterministic and randomized demand-paging and competitive algorithms. Among strongly-competitive deterministic algorithms, LRU matches the lower bound, while FIFO matches the upper bound. Well-known randomized algorithms such as Partition, Equitable, or Mark are shown not to be smooth. We introduce two new randomized algorithms, called Smoothed-LRU and LRU-Random. Smoothed-LRU allows sacrificing competitiveness for smoothness, where the trade-off is controlled by a parameter. LRU-Random is at least as competitive as any deterministic algorithm but smoother. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Theory of Computing Systems Springer Journals

On the Smoothness of Paging Algorithms

Loading next page...
 
/lp/springer_journal/on-the-smoothness-of-paging-algorithms-3zczwbr0iM
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Theory of Computation
ISSN
1432-4350
eISSN
1433-0490
D.O.I.
10.1007/s00224-017-9813-6
Publisher site
See Article on Publisher Site

Abstract

We study the smoothness of paging algorithms. How much can the number of page faults increase due to a perturbation of the request sequence? We call a paging algorithm smooth if the maximal increase in page faults is proportional to the number of changes in the request sequence. We also introduce quantitative smoothness notions that measure the smoothness of an algorithm. We derive lower and upper bounds on the smoothness of deterministic and randomized demand-paging and competitive algorithms. Among strongly-competitive deterministic algorithms, LRU matches the lower bound, while FIFO matches the upper bound. Well-known randomized algorithms such as Partition, Equitable, or Mark are shown not to be smooth. We introduce two new randomized algorithms, called Smoothed-LRU and LRU-Random. Smoothed-LRU allows sacrificing competitiveness for smoothness, where the trade-off is controlled by a parameter. LRU-Random is at least as competitive as any deterministic algorithm but smoother.

Journal

Theory of Computing SystemsSpringer Journals

Published: Oct 13, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off