On the Role of Pore Helix in Regulation of TRPV5 by Extracellular Protons

On the Role of Pore Helix in Regulation of TRPV5 by Extracellular Protons The transient receptor potential channel TRPV5 is localized to the apical membrane of the distal renal tubule and plays an important role in the regulation of transepithelial Ca2+ reabsorption in kidney. We have previously reported that extracellular protons inhibit TRPV5 by binding to glutamate-522 (E522) in the extracellular domain of the channel. We suggested that E522 is an extracellular “pH sensor” and its titration by extracellular protons inhibits TRPV5 via conformational change(s) of the pore helix. We now report that mutation of a pore helix residue glutamate-535 to glutamine (E535Q) enhances the sensitivity of the channel to inhibition by extracellular protons (i.e., shifting the apparent pKa for inhibition by extracellular protons to the more alkaline extracellular pH). The enhancement of extracellular proton-mediated inhibition of E535Q mutant is also dependent on E522. We have also reported that intracellular acidification enhances the sensitivity of TRPV5 to inhibition by extracellular protons. We now find that modulation of the extracellular proton-mediated inhibition by intracellular acidification is preserved in the E535Q mutant. These results provide further support for the idea that pore helix is involved in the regulation of TRPV5 by extracellular protons. Inhibition of TRPV5 by extracellular protons may contribute to hypercalciuria in diseases associated with high acid load. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

On the Role of Pore Helix in Regulation of TRPV5 by Extracellular Protons

Loading next page...
 
/lp/springer_journal/on-the-role-of-pore-helix-in-regulation-of-trpv5-by-extracellular-LjqKgGrQH1
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0023-4
Publisher site
See Article on Publisher Site

Abstract

The transient receptor potential channel TRPV5 is localized to the apical membrane of the distal renal tubule and plays an important role in the regulation of transepithelial Ca2+ reabsorption in kidney. We have previously reported that extracellular protons inhibit TRPV5 by binding to glutamate-522 (E522) in the extracellular domain of the channel. We suggested that E522 is an extracellular “pH sensor” and its titration by extracellular protons inhibits TRPV5 via conformational change(s) of the pore helix. We now report that mutation of a pore helix residue glutamate-535 to glutamine (E535Q) enhances the sensitivity of the channel to inhibition by extracellular protons (i.e., shifting the apparent pKa for inhibition by extracellular protons to the more alkaline extracellular pH). The enhancement of extracellular proton-mediated inhibition of E535Q mutant is also dependent on E522. We have also reported that intracellular acidification enhances the sensitivity of TRPV5 to inhibition by extracellular protons. We now find that modulation of the extracellular proton-mediated inhibition by intracellular acidification is preserved in the E535Q mutant. These results provide further support for the idea that pore helix is involved in the regulation of TRPV5 by extracellular protons. Inhibition of TRPV5 by extracellular protons may contribute to hypercalciuria in diseases associated with high acid load.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 28, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off