Access the full text.
Sign up today, get DeepDyve free for 14 days.
Silouanos Brazitikos, S. Dann, A. Giannopoulos, Alexander Koldbosky (2016)
On the average volume of sections of convex bodiesIsrael Journal of Mathematics, 222
(1998)
Local Stereology
L. Khachiyan (1989)
COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY: The problem of calculating the volume of a polyhedron is enumerably hardRussian Mathematical Surveys
A Schrijver (1986)
Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics
P. Combettes, M. Civanlar (1991)
The foundations of set theoretic estimation[Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing
Jonathan Bennett, A. Carbery, T. Tao (2005)
On the multilinear restriction and Kakeya conjecturesActa Mathematica, 196
L. Loomis, H. Whitney (1949)
An inequality related to the isoperimetric inequalityBulletin of the American Mathematical Society, 55
S. Bobkov, F. Nazarov (2003)
On Convex Bodies and Log-Concave Probability Measures with Unconditional Basis
A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits (1998)
Approximation of diameters: randomization doesn't helpProceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280)
P. Gritzmann, V. Klee (1996)
Computational ConvexityUniversität Trier, Mathematik/Informatik, Forschungsbericht, 96-25
M. Milanese, A. Vicino (1991)
Optimal estimation theory for dynamic systems with set membership uncertainty: An overviewAutom., 27
P. Gritzmann, V. Klee (1994)
On the Complexity of some Basic Problems in Computational Convexity: II. Volume and mixed volumesUniversität Trier, Mathematik/Informatik, Forschungsbericht, 94-07
David Ellis, E. Friedgut, Guy Kindler, A. Yehudayoff (2015)
Geometric stability via information theoryArXiv, abs/1510.00258
J. Lawrence (1991)
Polytope volume computationMathematics of Computation, 57
S. Ostro, R. Connelly (1983)
Convex profiles from asteroid lightcurvesIcarus, 57
T. Burger, P. Gritzmann, V. Klee (1996)
Polytope Projection and Projection PolytopesUniversität Trier, Mathematik/Informatik, Forschungsbericht, 95-14
K. Huebner, Steffen Ruthotto, D. Kragic (2008)
Minimum volume bounding box decomposition for shape approximation in robot grasping2008 IEEE International Conference on Robotics and Automation
H. Martini (1989)
Some characterizing properties of the simplexGeometriae Dedicata, 29
P. Balister, B. Bollobás (2007)
Projections, entropy and sumsetsCombinatorica, 32
S. Brazitikos, A. Giannopoulos, Dimitris-Marios Liakopoulos (2016)
Uniform cover inequalities for the volume of coordinate sections and projections of convex bodies
G. Barequet, Sariel Har-Peled (1999)
Efficiently approximating the minimum-volume bounding box of a point set in three dimensions
LG Khachiyan (1989)
The problem of computing the volume of polytopes is $$\#$$ # P-hard. [The problem of calculating the volume of a polyhedron is enumerably hard.]Russ. Math. Surv., 44
T. Burger, P. Gritzmann (2000)
Finding Optimal Shadows of PolytopesDiscrete & Computational Geometry, 24
R. Schneider (1972)
The mean surface area of the boxes circumscribed about a convex bodyAnnales Polonici Mathematici, 25
R. Gardner (1995)
Geometric Tomography
H. Minkowski (1903)
Volumen und OberflächeMathematische Annalen, 57
B. Eggers (2016)
Computers And Intractability A Guide To The Theory Of Np Completeness
Martin Dyer, A. Frieze, Ravi Kannan (1989)
A random polynomial time algorithm for approximating the volume of convex bodies
M. Dyer, A. Frieze (1988)
On the Complexity of Computing the Volume of a PolyhedronSIAM J. Comput., 17
K. Ball (1989)
Shadows of convex bodiesTransactions of the American Mathematical Society, 327
P. Gritzmann, A. Hufnagel (1999)
On the Algorithmic Complexity of Minkowski's Reconstruction TheoremJournal of the London Mathematical Society, 59
S. Campi, P. Gronchi (2011)
Estimates of Loomis-Whitney type for intrinsic volumesAdv. Appl. Math., 47
(1991)
Stefano Campi: Dipartimento di Ingegneria dell'Informazione, Universitá degli Studi di Sienna, I-53100 Siena
A. Giannopoulos, A. Koldobsky, P. Valettas (2016)
Inequalities for the Surface Area of Projections of Convex BodiesCanadian Journal of Mathematics, 70
T Burger, P Gritzmann, V Klee (1996)
Polytope projection and projection polytopesAm. Math. Monthly, 103
A. Koldobsky, Christos Saroglou, A. Zvavitch (2016)
Estimating volume and surface area of a convex body via its projections or sectionsStudia Mathematica
Jonathan Bennett, A. Carbery, James Wright (2005)
A non-linear generalisation of the Loomis-Whitney inequality and applicationsMathematical Research Letters, 12
M. Gromov (2008)
Entropy and isoperimetry for linear and non-linear group actionsGroups, Geometry, and Dynamics, 2
MR Garey, DS Johnson (1979)
Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences
R. Pattrick (1986)
A Practical Guide to Fluid Inclusion StudiesMineralogical Magazine, 50
S. Campi, R. Gardner, P. Gronchi (2013)
Reverse and dual Loomis-Whitney-type inequalitiesTransactions of the American Mathematical Society, 368
N. Brannen (1996)
Volumes of projection bodiesMathematika, 43
K. Ball (1989)
Volume Ratios and a Reverse Isoperimetric InequalityJournal of The London Mathematical Society-second Series
C Hegde, MB Wakin, RG Baraniuk (2008)
Advances in Neural Information Processing Systems
J. O'Rourke (1985)
Finding minimal enclosing boxesInternational Journal of Computer & Information Sciences, 14
R. Schneider, W. Weil (1983)
Zonoids and Related Topics
B. Weissbach, Horst Martini (1984)
Zur besten Beleuchtung konvexer Polyeder, 17
Universitá degli Studi di Firenze, I-50122 Firenze
A. Schrijver (1986)
Theory of linear and integer programming
P Gritzmann, V Klee (1994)
Polytopes: Abstract, Convex and Computational. NATO Science Series. Series C: Mathematical and Physical Sciences
P. McMullen (1997)
GEOMETRIC TOMOGRAPHY (Encyclopedia of Mathematics and its Applications 58)Bulletin of The London Mathematical Society, 29
C. Hegde, M. Wakin, Richard Baraniuk (2007)
Random Projections for Manifold Learning
H. Brascamp, E. Lieb (1976)
Best Constants in Young's Inequality, Its Converse, and Its Generalization to More than Three FunctionsAdvances in Mathematics, 20
P. Combettes (1993)
Foundation of set theoretic estimation, 81
Yuhan Cai, Ioannis Giotis (2005)
Isoperimetric Problems
A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovász, M. Simonovits (2001)
Deterministic and randomized polynomial-time approximation of radiiMathematika, 48
Geometric Inequalities
B. Bollobás, A. Thomason (1995)
Projections of Bodies and Hereditary Properties of HypergraphsBulletin of The London Mathematical Society, 27
Gaoyong Zhang (1991)
Restricted chord projection and affine inequalitiesGeometriae Dedicata, 39
G. Chakerian (1972)
The mean volume of boxes and cylinders circumscribed about a convex bodyIsrael Journal of Mathematics, 12
Jonathan Bennett, N. Bez, Taryn Flock, Sanghyuk Lee (2015)
Stability of the Brascamp-Lieb constant and applicationsAmerican Journal of Mathematics, 140
C. Chan, S. Tan (2001)
Determination of the minimum bounding box of an arbitrary solid: an iterative approachComputers & Structures, 79
Mostafa Khoshnevisan (2009)
Compressed sensing
K. Ball (1994)
CONVEX BODIES: THE BRUNN–MINKOWSKI THEORYBulletin of The London Mathematical Society, 26
M. Dyer, P. Gritzmann, A. Hufnagel (1998)
On the Complexity of Computing Mixed VolumesSIAM J. Comput., 27
N. Megiddo (1990)
On the Complexity of Some Geometric Problems in Unbounded DimensionJ. Symb. Comput., 10
M. Meyer (1988)
A Volume Inequality Concerning Sections of Convex SetsBulletin of The London Mathematical Society, 20
SG Bobkov, FL Nazarov (2003)
Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics
R Schneider, W Weil (1983)
Convexity and Its Applications
H. Freeman, R. Shapira (1975)
Determining the minimum-area encasing rectangle for an arbitrary closed curveCommun. ACM, 18
P. Gritzmann, V. Klee (1994)
On the complexity of some basic problems in computational convexity: I. Containment problemsDiscret. Math., 136
C. Rogers, G. Shephard (1958)
Convex Bodies Associated with a Given Convex BodyJournal of The London Mathematical Society-second Series
LG Khachiyan (1988)
On the complexity of computing the volume of a polytopeIzvestia Akad. Nauk. SSSR Eng. Cybern., 3
M. Garey (1979)
Johnson: computers and intractability: a guide to the theory of np- completeness (freeman
The present paper deals with the problem of computing (or at least estimating) the $$\mathrm {LW}$$ LW -number $$\lambda (n)$$ λ ( n ) , i.e., the supremum of all $$\gamma $$ γ such that for each convex body K in $${\mathbb {R}}^n$$ R n there exists an orthonormal basis $$\{u_1,\ldots ,u_n\}$$ { u 1 , … , u n } such that $$\begin{aligned} {\text {vol}}_n(K)^{n-1} \ge \gamma \prod _{i=1}^n {\text {vol}}_{n-1} (K|u_i^{\perp }) , \end{aligned}$$ vol n ( K ) n - 1 ≥ γ ∏ i = 1 n vol n - 1 ( K | u i ⊥ ) , where $$K|u_i^{\perp }$$ K | u i ⊥ denotes the orthogonal projection of K onto the hyperplane $$u_i^{\perp }$$ u i ⊥ perpendicular to $$u_i$$ u i . Any such inequality can be regarded as a reverse to the well-known classical Loomis–Whitney inequality. We present various results on such reverse Loomis–Whitney inequalities. In particular, we prove some structural results, give bounds on $$\lambda (n)$$ λ ( n ) and deal with the problem of actually computing the $$\mathrm {LW}$$ LW -constant of a rational polytope.
Discrete & Computational Geometry – Springer Journals
Published: Oct 27, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.