On the rate-jitter performance of jitter-buffer in TDMoPSN: study using queueing models with a state-dependent service

On the rate-jitter performance of jitter-buffer in TDMoPSN: study using queueing models with a... Time-division multiplexing over packet-switched network (TDMoPSN) is an intermediate phase of transition from current synchronous TDM to future all-optical converged network. TDMoPSN is exclusively used to transport interactive voice traffic transparently over a PSN (e.g., IP, MPLS or Ethernet). The goal of this paper is to reduce rate-jitter that is introduced into a stream of packets carrying TDM payload. We have proposed two online algorithms, algorithm-A and algorithm-B, to reduce the rate-jitter and shown analytically that the rate-jitter achieved by algorithm-A is strictly less than the rate-jitter of online algorithm proposed by Mansour et al. [1]. We have used three stochastic processes, namely Poisson, Markov-modulated Poisson process (MMPP) and an arrival process with Pareto-distributed inter-arrival times (see [2–4]) for modeling the arrival of TDM packets (say, IP packets with single or many TDM frames as payloads) at the destination. We undertook statistical analysis of the proposed algorithms by modeling the jitter-buffer as $$M/\widetilde{D}/1/\, B_{on}$$ M / D ~ / 1 / B o n and $$MMPP/\widetilde{D}/1/B_{on}$$ M M P P / D ~ / 1 / B o n queues, to derive steady-state queue-length distribution, mean waiting time and distribution of inter-departure times. We also simulate the most realistic queueing model $$Pareto/\widetilde{D}/1/B_{on}$$ P a r e t o / D ~ / 1 / B o n of our study and evaluated its performance with respect to the metrics: rate-jitter, mean waiting time, packet loss probability and steady-state queue-length distribution. Simulation results show that our proposed algorithms far outperforms the scheme proposed in [1]. We also present simulation results to verify the correctness of analytical queueing models. The algorithms proposed here are more general (for TDMoPSNs) and can be used to study TDMoIP, pseudowire, CES over metro Ethernet network (MEN), etc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the rate-jitter performance of jitter-buffer in TDMoPSN: study using queueing models with a state-dependent service

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial