On the Physiological Role of Anaerobically Synthesized Lipids in Oryza sativa Seedlings

On the Physiological Role of Anaerobically Synthesized Lipids in Oryza sativa Seedlings The objective of this work was to elucidate a possible adaptive role of lipid biosynthesis and unsaturated fatty acids (FAs), esterified to lipids, as terminal acceptors of electrons, alternative to molecular oxygen, in the shoots of rice seedlings (Oryza sativa L.) under conditions of strict anoxia. Biosynthesis of lipids and their accumulation, as well as the reduction of double bonds in unsaturated FAs, were studied by electron microscopic observation of the accumulation of lipid bodies in the cytoplasm and by the biochemical analysis of FAs in shoot lipids before and after anaerobic incubation of the shoots. The experiments were carried out with intact coleoptiles after 5 and 8 days of anaerobic germination of seeds (primary anoxia) and with detached shoots, preliminarily grown in air and then subjected to anoxia in the presence of 2% glucose for 48 h (secondary anoxia). In these experiments, lipid bodies did not accumulate in the cytoplasm under anoxic conditions. Lipid bodies appeared only during 48-h anaerobic incubation of detached coleoptiles in the absence of exogenous glucose, when mitochondria degraded. There was no change either in the double bond index of FAs, or in the qualitative and quantitative composition of FAs during shoot anaerobic incubation. We conclude that neither lipids synthesized under anaerobic conditions nor esterified unsaturated FAs are involved in plant adaptation to anaerobiosis as terminal acceptors of electrons, alternative to molecular oxygen. Lipid biosynthesis under anoxic conditions, which was demonstrated for anoxia-tolerant seedlings of Oryza sativa and Echinochloa phyllopogon in experiments with radioactive precursors, 14C-acetate and 3H-glycerol, is only the manifestation of a turnover of saturated FAs and various classes of lipids, which stabilizes cell membranes under adverse conditions of strict anoxia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

On the Physiological Role of Anaerobically Synthesized Lipids in Oryza sativa Seedlings

Loading next page...
 
/lp/springer_journal/on-the-physiological-role-of-anaerobically-synthesized-lipids-in-oryza-43TAoO6WmX
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2005 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1007/s11183-005-0071-0
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial