On the performance of distributed lightpath provisioning with dynamic routing and wavelength assignment

On the performance of distributed lightpath provisioning with dynamic routing and wavelength... Distributed lightpath provisioning in wavelength-division multiplexing (WDM) networks has gained wide research interests. In this article, we study the performance of distributed lightpath provisioning in WDM networks with dynamic routing and wavelength assignment (RWA). Specifically, we consider the case where routing of each lightpath is calculated based on globally flooded link-state information, and wavelength assignment is decided through local information exchanges. Simulation results show that such schemes steadily outperform those schemes with only global flooding or only local information exchanges. More significantly, the impacts of various factors on the proposed scheme, including RWA algorithm, network topology, number of wavelengths per fiber, global flooding interval, and traffic load, have been evaluated. Such evaluations help to achieve some insights useful for the future developments of efficient lightpath provisioning schemes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the performance of distributed lightpath provisioning with dynamic routing and wavelength assignment

Loading next page...
 
/lp/springer_journal/on-the-performance-of-distributed-lightpath-provisioning-with-dynamic-t0ThAflO0Z
Publisher
Springer US
Copyright
Copyright © 2008 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-008-0153-y
Publisher site
See Article on Publisher Site

Abstract

Distributed lightpath provisioning in wavelength-division multiplexing (WDM) networks has gained wide research interests. In this article, we study the performance of distributed lightpath provisioning in WDM networks with dynamic routing and wavelength assignment (RWA). Specifically, we consider the case where routing of each lightpath is calculated based on globally flooded link-state information, and wavelength assignment is decided through local information exchanges. Simulation results show that such schemes steadily outperform those schemes with only global flooding or only local information exchanges. More significantly, the impacts of various factors on the proposed scheme, including RWA algorithm, network topology, number of wavelengths per fiber, global flooding interval, and traffic load, have been evaluated. Such evaluations help to achieve some insights useful for the future developments of efficient lightpath provisioning schemes.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 22, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off