On the P–T– $$fO_{2}$$ f O 2 stability of Fe4O5, Fe5O6 and Fe4O5-rich solid solutions

On the P–T– $$fO_{2}$$ f O 2 stability of Fe4O5, Fe5O6 and Fe4O5-rich solid solutions The high-pressure phases Fe4O5 and Fe5O6 have recently been added to the list of known iron oxides. As mixed-valence phases, it has been suggested that they could form in the Earth’s mantle once the dominant minerals become saturated in ferric iron. The possibility that Fe4O5 could exist in the mantle is also supported by the fact that it forms extensive solid solutions with both Mg2+ and Cr3+. In this study, we present the results of high-pressure and high-temperature multi-anvil experiments performed between 5 and 24 GPa at 1000–1400 °C aimed at constraining the stability field of the Fe4O5 phase. We combine these results with published phase equilibria, equation of state and Fe–Mg partitioning data to estimate the thermodynamic properties of Fe4O5, Fe5O6 and the (Mg,Fe)2Fe2O5 solid solution. Using our thermodynamic model, the oxygen fugacity at which the high-pressure iron oxides become stable is calculated and the redox stability of (Mg,Fe)2Fe2O5 in an assemblage of olivine and pyroxene is calculated as a function of the bulk Fe/(Fe + Mg) ratio. Fe4O5 and (Mg,Fe)2Fe2O5 are stable at oxygen fugacities higher than the diamond stability field and are, therefore, unlikely to be found as inclusions in diamonds. The stability field of Fe5O6, on the other hand, extends to oxygen fugacities compatible with diamond formation. Using the Mg–Fe solid solution model, we show that Fe4O5-structured phases would be restricted to aluminium-poor environments in the mantle such as dunites or silica–iron oxide-rich sediments transported into the mantle via subduction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Contributions to Mineralogy and Petrology Springer Journals

On the P–T– $$fO_{2}$$ f O 2 stability of Fe4O5, Fe5O6 and Fe4O5-rich solid solutions

Loading next page...
 
/lp/springer_journal/on-the-p-t-fo-2-f-o-2-stability-of-fe4o5-fe5o6-and-fe4o5-rich-solid-eYX3o3N4KI
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Subject
Earth Sciences; Geology; Mineral Resources; Mineralogy
ISSN
0010-7999
eISSN
1432-0967
D.O.I.
10.1007/s00410-016-1258-4
Publisher site
See Article on Publisher Site

Abstract

The high-pressure phases Fe4O5 and Fe5O6 have recently been added to the list of known iron oxides. As mixed-valence phases, it has been suggested that they could form in the Earth’s mantle once the dominant minerals become saturated in ferric iron. The possibility that Fe4O5 could exist in the mantle is also supported by the fact that it forms extensive solid solutions with both Mg2+ and Cr3+. In this study, we present the results of high-pressure and high-temperature multi-anvil experiments performed between 5 and 24 GPa at 1000–1400 °C aimed at constraining the stability field of the Fe4O5 phase. We combine these results with published phase equilibria, equation of state and Fe–Mg partitioning data to estimate the thermodynamic properties of Fe4O5, Fe5O6 and the (Mg,Fe)2Fe2O5 solid solution. Using our thermodynamic model, the oxygen fugacity at which the high-pressure iron oxides become stable is calculated and the redox stability of (Mg,Fe)2Fe2O5 in an assemblage of olivine and pyroxene is calculated as a function of the bulk Fe/(Fe + Mg) ratio. Fe4O5 and (Mg,Fe)2Fe2O5 are stable at oxygen fugacities higher than the diamond stability field and are, therefore, unlikely to be found as inclusions in diamonds. The stability field of Fe5O6, on the other hand, extends to oxygen fugacities compatible with diamond formation. Using the Mg–Fe solid solution model, we show that Fe4O5-structured phases would be restricted to aluminium-poor environments in the mantle such as dunites or silica–iron oxide-rich sediments transported into the mantle via subduction.

Journal

Contributions to Mineralogy and PetrologySpringer Journals

Published: May 4, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off