On the Outage Performance of Reactive Relay Selection in Cooperative Cognitive Networks Over Nakagami-m Fading Channels

On the Outage Performance of Reactive Relay Selection in Cooperative Cognitive Networks Over... This paper evaluates outage performance of reactive relay selection in cognitive radio networks over Nakagami-m fading channels under consideration of imperfect channel information on both interference and transmission channels, peak transmit power constraint, long-term power constraint, interference from primary users (PUs), and direct channel between secondary source and destination. Toward this end, power allocation for secondary transmitters is first proposed to satisfy both power constraints and account for imperfect Nakagami-m channel information and interference from PUs. Then, exact closed-form outage probability representation for secondary destination is suggested to promptly assess system performance and provide useful insights into performance limits. Various results show validity of the proposed expressions, substantial system performance degradation due to imperfect channel information and interference from PUs, error floor in secondary network, performance trade-off between secondary and primary networks, and considerable performance enhancement with respect to the increase in the number of secondary relays and larger fading severity parameter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

On the Outage Performance of Reactive Relay Selection in Cooperative Cognitive Networks Over Nakagami-m Fading Channels

Loading next page...
 
/lp/springer_journal/on-the-outage-performance-of-reactive-relay-selection-in-cooperative-YfEY8GotWc
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4217-0
Publisher site
See Article on Publisher Site

Abstract

This paper evaluates outage performance of reactive relay selection in cognitive radio networks over Nakagami-m fading channels under consideration of imperfect channel information on both interference and transmission channels, peak transmit power constraint, long-term power constraint, interference from primary users (PUs), and direct channel between secondary source and destination. Toward this end, power allocation for secondary transmitters is first proposed to satisfy both power constraints and account for imperfect Nakagami-m channel information and interference from PUs. Then, exact closed-form outage probability representation for secondary destination is suggested to promptly assess system performance and provide useful insights into performance limits. Various results show validity of the proposed expressions, substantial system performance degradation due to imperfect channel information and interference from PUs, error floor in secondary network, performance trade-off between secondary and primary networks, and considerable performance enhancement with respect to the increase in the number of secondary relays and larger fading severity parameter.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Apr 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off