On the optimal path in the dynamic pool model for a fishery

On the optimal path in the dynamic pool model for a fishery Ecosystem-based fishery management (EBFM) is a new direction for fishery management, essentially reversing the order of management priorities to start with the ecosystem rather than the target species. This concept of management is a direct extension of the concept of a holistic approach incorporating interspecific interactions and physical environmental influences. However, because of the limited understanding of the complexity of marine ecosystems, few fisheries are actually managed on a multispecies basis. Even now, in order to specify a practical fishing policy we need a single-species model and utilize it by partially taking account of the effects of other factors mentioned above on the target species biomass. In fact, it is contended that in systems with moderate amounts of data, EBFM could be characterized by effective single-species management with the addition of precautionary set-asides for unknown ecosystem components. Hence, it is still necessary to examine a single-species model so as to clarify the extent of its applicability. The model investigated in this paper is what is called the dynamic pool model, which was proposed by C.W. Clark in the mid-1970s as a dynamic optimization of the classic Beverton and Holt static model for a fishery, in an attempt to make the process of growth and aging inherent in each of the creature resources reflect directly into the economic process. This dynamic model has been applied to a wide variety of commercial fish species. However, the applications have been largely confined to computer simulations using the discrete-time stand-by of the original Clark continuous-time model. This situation is caused mainly by the complexity of the mathematical structure of the Clark model. In this paper, we first specify the material related to the complexity. Subsequently, we provide a rigorous proof for the long-standing conjecture due to Clark concerning the optimal path or harvesting schedule. In addition, two derivative cases are examined: one is the case in which a year-class of fish leaves a given fishing sea area permanently before its natural biomass peaks, the other is the case in which the escapement of a year-class is required to be more than a given minimum level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reviews in Fish Biology and Fisheries Springer Journals

On the optimal path in the dynamic pool model for a fishery

Loading next page...
Springer Netherlands
Copyright © 2007 by Springer Science+Business Media B.V.
Life Sciences; Zoology ; Freshwater & Marine Ecology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial