Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On the optimal height of ionospheric shell for single-site TEC estimation

On the optimal height of ionospheric shell for single-site TEC estimation The ionospheric shell height has an impact on the estimated differential code bias (DCB) and total electron content (TEC) obtained by global navigation satellite system (GNSS) data, especially for a single site. However, the shell height is generally considered as a fixed value. Based on data from the international GNSS service (IGS), we propose the concept of optimal ionospheric shell height, which minimizes |ΔDCB| when compared to the DCB provided by Center for Orbit Determination in Europe (CODE). Based on the data from five IGS stations at high, middle, and low latitudes during the time 2003–2013, we investigate the variation in the optimal ionospheric shell height and its relation with the solar activity. Results indicate that the relation between the mean of the optimal ionospheric shell height and the latitude is N-shaped. At the three stations at midlatitude, the mean value almost increases linearly with the latitude. The optimal ionospheric shell heights show 11-year and 1-year periods. The influences of the solar activity are related to the means of the optimal ionospheric shell height during the time 2003–2013. The slope of the linear fitting decreases with the mean value. Using the data from 2003 to 2013, we estimate the daily optimal ionospheric shell heights for 2014 by using the Fourier fitting method and then calculate the daily average of ΔDCB of the observed satellites by comparing to CODE results. The statistical results of the daily average in 2014 show that the optimal ionospheric shell height is much better than the fixed one. From the high-latitude station to the low-latitude station, the improvements in the mean value are about 75, 92, 96, 50, and 88% and the root-mean-squares are reduced by about 0.16, 2.09, 2.01, 1.01, and 0.02 TECu, respectively. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png GPS Solutions Springer Journals

On the optimal height of ionospheric shell for single-site TEC estimation

GPS Solutions , Volume 22 (2) – Feb 23, 2018

Loading next page...
1
 
/lp/springer_journal/on-the-optimal-height-of-ionospheric-shell-for-single-site-tec-qH0mEdQqst

References (45)

Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Earth Sciences; Geophysics/Geodesy; Atmospheric Sciences; Space Sciences (including Extraterrestrial Physics, Space Exploration and Astronautics) ; Automotive Engineering; Electrical Engineering
ISSN
1080-5370
eISSN
1521-1886
DOI
10.1007/s10291-018-0715-0
Publisher site
See Article on Publisher Site

Abstract

The ionospheric shell height has an impact on the estimated differential code bias (DCB) and total electron content (TEC) obtained by global navigation satellite system (GNSS) data, especially for a single site. However, the shell height is generally considered as a fixed value. Based on data from the international GNSS service (IGS), we propose the concept of optimal ionospheric shell height, which minimizes |ΔDCB| when compared to the DCB provided by Center for Orbit Determination in Europe (CODE). Based on the data from five IGS stations at high, middle, and low latitudes during the time 2003–2013, we investigate the variation in the optimal ionospheric shell height and its relation with the solar activity. Results indicate that the relation between the mean of the optimal ionospheric shell height and the latitude is N-shaped. At the three stations at midlatitude, the mean value almost increases linearly with the latitude. The optimal ionospheric shell heights show 11-year and 1-year periods. The influences of the solar activity are related to the means of the optimal ionospheric shell height during the time 2003–2013. The slope of the linear fitting decreases with the mean value. Using the data from 2003 to 2013, we estimate the daily optimal ionospheric shell heights for 2014 by using the Fourier fitting method and then calculate the daily average of ΔDCB of the observed satellites by comparing to CODE results. The statistical results of the daily average in 2014 show that the optimal ionospheric shell height is much better than the fixed one. From the high-latitude station to the low-latitude station, the improvements in the mean value are about 75, 92, 96, 50, and 88% and the root-mean-squares are reduced by about 0.16, 2.09, 2.01, 1.01, and 0.02 TECu, respectively.

Journal

GPS SolutionsSpringer Journals

Published: Feb 23, 2018

There are no references for this article.