On the Maximum Protection Problem in IP-over-WDM Networks Using IP LSP Protection

On the Maximum Protection Problem in IP-over-WDM Networks Using IP LSP Protection In dynamic IP-over-WDM networks efficient fault-management techniques become more difficult since as demands change with time the optimal logical topology varies as well. Changes in the virtual topology should be done with care because working IP LSPs routed on top of a virtual topology should not be interrupted. Reconfiguration of the virtual topology may also affect precomputed backup IP LSPs to be activated in case of failure meaning that backup IP LSPs would need to be recomputed after any change in the virtual topology. A good sense solution can be the dimensioning of the virtual topology for a worst case traffic scenario, having as goal the minimization of the network cost, for example, and then route dynamic IP LSPs on this virtual topology. The virtual topology would remain unchanged as long as possible, that is, until changes in the virtual topology are considered to bring considerable benefits. Since data services over IP are essentially of a best-effort nature, protection could be provided, using IP LSP protection, only when bandwidth is available in the virtual topology. The computation of backup IP LSPs does not interfere with working IP LSPs meaning that no service interruption will exist. Such a strategy, considered in this paper, allows resources to be used efficiently, since free bandwidth is used for backup purposes, while the normal delivery of traffic is guaranteed in peak traffic situations although having no protection guarantees. Our main objective is to quantify the spare capacity, which can be used for restoration (backup) purposes, over a virtual topology designed and optimized to carry a traffic scenario with no survivability and QoS requirements. We analyse the maximum protection (MP) problem in such IP-over-WDM network environment. Protection is provided to IP LSP requests whenever possible through bandwidth reservation in a backup IP LSP on the virtual topology. Besides the mathematical formalization of the MP problem, an upper bound and heuristic algorithms are proposed and evaluated. The traffic considered includes IP LSPs of different granularities and is the worst case traffic scenario for which the network should be dimensioned. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the Maximum Protection Problem in IP-over-WDM Networks Using IP LSP Protection

Loading next page...
 
/lp/springer_journal/on-the-maximum-protection-problem-in-ip-over-wdm-networks-using-ip-lsp-ADBWC96vil
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-004-1696-1
Publisher site
See Article on Publisher Site

Abstract

In dynamic IP-over-WDM networks efficient fault-management techniques become more difficult since as demands change with time the optimal logical topology varies as well. Changes in the virtual topology should be done with care because working IP LSPs routed on top of a virtual topology should not be interrupted. Reconfiguration of the virtual topology may also affect precomputed backup IP LSPs to be activated in case of failure meaning that backup IP LSPs would need to be recomputed after any change in the virtual topology. A good sense solution can be the dimensioning of the virtual topology for a worst case traffic scenario, having as goal the minimization of the network cost, for example, and then route dynamic IP LSPs on this virtual topology. The virtual topology would remain unchanged as long as possible, that is, until changes in the virtual topology are considered to bring considerable benefits. Since data services over IP are essentially of a best-effort nature, protection could be provided, using IP LSP protection, only when bandwidth is available in the virtual topology. The computation of backup IP LSPs does not interfere with working IP LSPs meaning that no service interruption will exist. Such a strategy, considered in this paper, allows resources to be used efficiently, since free bandwidth is used for backup purposes, while the normal delivery of traffic is guaranteed in peak traffic situations although having no protection guarantees. Our main objective is to quantify the spare capacity, which can be used for restoration (backup) purposes, over a virtual topology designed and optimized to carry a traffic scenario with no survivability and QoS requirements. We analyse the maximum protection (MP) problem in such IP-over-WDM network environment. Protection is provided to IP LSP requests whenever possible through bandwidth reservation in a backup IP LSP on the virtual topology. Besides the mathematical formalization of the MP problem, an upper bound and heuristic algorithms are proposed and evaluated. The traffic considered includes IP LSPs of different granularities and is the worst case traffic scenario for which the network should be dimensioned.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Aug 10, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off