On the Invariance of Stationary State Probabilities of a Non-Product-Form Single-Line Queueing System

On the Invariance of Stationary State Probabilities of a Non-Product-Form Single-Line Queueing... We consider a single-line queueing system (QS) with Poisson input flow of varying intensity, which depends on the number of demands in the system. The job size (length) distribution for a demand depends on the number of demands in the system at the arrival moment. The service rate also depends on the number of calls in the QS. If the job size for a new arrival is larger than the remaining job size for the currently processed demand, then the arrival is put at the beginning of the queue with a certain probability, which depends on the total number of demands in the system. Otherwise, it occupies the server and displaces the currently processed demand, which is put at the beginning of the queue. The probability distribution of stationary states of the QS is found and necessary and sufficient conditions for this distribution to be invariant with respect to the job size distribution with a fixed mean are obtained. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Problems of Information Transmission Springer Journals

On the Invariance of Stationary State Probabilities of a Non-Product-Form Single-Line Queueing System

Loading next page...
 
/lp/springer_journal/on-the-invariance-of-stationary-state-probabilities-of-a-non-product-9pT07R5VoO
Publisher
Springer Journals
Copyright
Copyright © 2002 by MAIK “Nauka/Interperiodica”
Subject
Engineering; Communications Engineering, Networks; Electrical Engineering; Information Storage and Retrieval; Systems Theory, Control
ISSN
0032-9460
eISSN
1608-3253
D.O.I.
10.1023/A:1022058114805
Publisher site
See Article on Publisher Site

Abstract

We consider a single-line queueing system (QS) with Poisson input flow of varying intensity, which depends on the number of demands in the system. The job size (length) distribution for a demand depends on the number of demands in the system at the arrival moment. The service rate also depends on the number of calls in the QS. If the job size for a new arrival is larger than the remaining job size for the currently processed demand, then the arrival is put at the beginning of the queue with a certain probability, which depends on the total number of demands in the system. Otherwise, it occupies the server and displaces the currently processed demand, which is put at the beginning of the queue. The probability distribution of stationary states of the QS is found and necessary and sufficient conditions for this distribution to be invariant with respect to the job size distribution with a fixed mean are obtained.

Journal

Problems of Information TransmissionSpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off