On the interior regularity of weak solutions to the 2-D incompressible Euler equations

On the interior regularity of weak solutions to the 2-D incompressible Euler equations We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ u ∈ L loc 2 + ε ( Ω T ) ⇒ local regularity for weak solutions in the energy space $$L_t^\infty L_x^2$$ L t ∞ L x 2 , satisfying appropriate vorticity estimates. We also obtain improved integrability for the vorticity—which is to be compared with the DiPerna–Lions assumptions. The argument is completely local in nature as the result follows from the structural properties of the equation alone, while completely avoiding all sorts of boundary conditions and related gradient estimates. To the best of our knowledge, the approach we follow is new in the context of Euler equations and provides an alternative look at interior regularity issues. We also show how our method can be used to give a modified proof of the classical Serrin condition for the regularity of the Navier–Stokes equations in any dimension. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Calculus of Variations and Partial Differential Equations Springer Journals

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

Loading next page...
 
/lp/springer_journal/on-the-interior-regularity-of-weak-solutions-to-the-2-d-incompressible-9MvEfeoxmx
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Mathematics; Analysis; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Theoretical, Mathematical and Computational Physics
ISSN
0944-2669
eISSN
1432-0835
D.O.I.
10.1007/s00526-017-1231-8
Publisher site
See Article on Publisher Site

Abstract

We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ u ∈ L loc 2 + ε ( Ω T ) ⇒ local regularity for weak solutions in the energy space $$L_t^\infty L_x^2$$ L t ∞ L x 2 , satisfying appropriate vorticity estimates. We also obtain improved integrability for the vorticity—which is to be compared with the DiPerna–Lions assumptions. The argument is completely local in nature as the result follows from the structural properties of the equation alone, while completely avoiding all sorts of boundary conditions and related gradient estimates. To the best of our knowledge, the approach we follow is new in the context of Euler equations and provides an alternative look at interior regularity issues. We also show how our method can be used to give a modified proof of the classical Serrin condition for the regularity of the Navier–Stokes equations in any dimension.

Journal

Calculus of Variations and Partial Differential EquationsSpringer Journals

Published: Aug 21, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off