On the interior regularity of weak solutions to the 2-D incompressible Euler equations

On the interior regularity of weak solutions to the 2-D incompressible Euler equations We study whether some of the non-physical properties observed for weak solutions of the incompressible Euler equations can be ruled out by studying the vorticity formulation. Our main contribution is in developing an interior regularity method in the spirit of De Giorgi–Nash–Moser, showing that local weak solutions are exponentially integrable, uniformly in time, under minimal integrability conditions. This is a Serrin-type interior regularity result $$\begin{aligned} u \in L_\mathrm{loc}^{2+\varepsilon }(\Omega _T) \implies \mathrm{local\ regularity} \end{aligned}$$ u ∈ L loc 2 + ε ( Ω T ) ⇒ local regularity for weak solutions in the energy space $$L_t^\infty L_x^2$$ L t ∞ L x 2 , satisfying appropriate vorticity estimates. We also obtain improved integrability for the vorticity—which is to be compared with the DiPerna–Lions assumptions. The argument is completely local in nature as the result follows from the structural properties of the equation alone, while completely avoiding all sorts of boundary conditions and related gradient estimates. To the best of our knowledge, the approach we follow is new in the context of Euler equations and provides an alternative look at interior regularity issues. We also show how our method can be used to give a modified proof of the classical Serrin condition for the regularity of the Navier–Stokes equations in any dimension. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Calculus of Variations and Partial Differential Equations Springer Journals

On the interior regularity of weak solutions to the 2-D incompressible Euler equations

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany
Mathematics; Analysis; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Theoretical, Mathematical and Computational Physics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial