On the improvement of network resource utilization efficiency for the establishment of static dependable connections in SRLG-constrained WDM translucent networks

On the improvement of network resource utilization efficiency for the establishment of static... In this paper, we investigate the problem of establishing static connections with fault-tolerant requirements, also known as dependable connections, taking into account quality of transmission constraints. To the best of our knowledge, this is the first study that tackles the aforementioned problem under shared risk link group (SRLG) constraints in translucent WDM optical mesh networks where typically a set of strategically localized network nodes are equipped with regeneration capability to overcome physical-layer impairment effects. A novel cross-layer heuristic approach is introduced to solve the problem for an heterogeneous networked scenario relying on a cost-effective two-stage protection procedure which combines the well-known path protection and partial path protection schemes in order to ensure instantaneous recovery from any SRLG-failure event. The proposed heuristic integrates a generic auxiliary graph model that incorporates various network heterogeneity factors such as the number of transceivers at each network node, the number of wavelengths on each fiber link, and the regeneration capability of each node, represented by different edges in the constructed graph. Moreover, the integrated auxiliary graph can be applied efficiently to model either single- or mixed-line-rate translucent WDM optical networks wherein different modulation formats are employed in order to support the transmission at different line rates. Our solution approach aims at maximizing the total number of accommodated requests by reducing network resource consumption through the simultaneous use of the backup–backup and primary–backup multiplexing techniques. We, here, present extended versions of these two techniques that generalize the sharing concept to some other important node resources—specifically, regeneration equipments which constitute the major cost factor in optical transport networks—in addition to link resources (i.e., wavelength channels). As far as we know, this is the first attempt to deploy simultaneously generalized versions of the backup–backup and primary–backup multiplexing techniques when considering static traffic patterns without compromising the 100 % fault-recoverability guarantee. The performances of the proposed heuristic are evaluated and discussed through extensive numerical experiments carried out on different network topologies. Significant improvements are demonstrated, either in terms of network blocking performance or in terms of resource utilization efficiency, in comparison with previously proposed approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the improvement of network resource utilization efficiency for the establishment of static dependable connections in SRLG-constrained WDM translucent networks

Loading next page...
Springer US
Copyright © 2015 by Springer Science+Business Media New York
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial