On the impact of filter dispersion slope on the performance of 40 Gbps DWDM systems and networks

On the impact of filter dispersion slope on the performance of 40 Gbps DWDM systems and networks A technique to separate the phase-induced penalty of a cascade of optical filters into dispersion, dispersion slope, and higher-order terms is introduced and its impact on the proper design and engineering of high-speed Dense Wavelength Division Multiplexed (WDM) optical systems and networks is demonstrated. As the currently deployed fiber optic systems and networks strive for higher speeds to respond to the growing global needs for more bandwidth, the impact of physical layer impairments (such as optical filter dispersion slope) which were not significant at lower speeds are now becoming increasingly important and worth looking at. In this article we demonstrate that at speeds of 40 Gbps and beyond, where the next generation systems will be operating, optical filter dispersion slope is at least as important as filter dispersion. As a result, separating the above contributions and accounting for each using the described modeling technique proves to be an effective way for designing and engineering such systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the impact of filter dispersion slope on the performance of 40 Gbps DWDM systems and networks

Loading next page...
 
/lp/springer_journal/on-the-impact-of-filter-dispersion-slope-on-the-performance-of-40-gbps-966VerBZrf
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-006-0051-0
Publisher site
See Article on Publisher Site

Abstract

A technique to separate the phase-induced penalty of a cascade of optical filters into dispersion, dispersion slope, and higher-order terms is introduced and its impact on the proper design and engineering of high-speed Dense Wavelength Division Multiplexed (WDM) optical systems and networks is demonstrated. As the currently deployed fiber optic systems and networks strive for higher speeds to respond to the growing global needs for more bandwidth, the impact of physical layer impairments (such as optical filter dispersion slope) which were not significant at lower speeds are now becoming increasingly important and worth looking at. In this article we demonstrate that at speeds of 40 Gbps and beyond, where the next generation systems will be operating, optical filter dispersion slope is at least as important as filter dispersion. As a result, separating the above contributions and accounting for each using the described modeling technique proves to be an effective way for designing and engineering such systems.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Feb 7, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off