On the generation of large-scale homogeneous turbulence

On the generation of large-scale homogeneous turbulence An active turbulence generating grid, based on the rotating-vane design of Makita (1991), was developed for a large wind tunnel. At 2.14 m square, the grid is the largest of this type ever developed. To improve the isotropy of the turbulence generated, the grid was placed in the wind tunnel contraction. Measurements show that the grid produces a closely uniform mean flow and homogeneous isotropic turbulence to within two integral scales from the wall. By systematically varying the flow speed and parameters controlling the random motion of the vanes, grid turbulence with a wide variety of characteristics was produced and the dependence of those characteristics on the operating parameters of the grid revealed. Taylor Reynolds numbers of the grid turbulence varied from 100 to 1,360 and integral scales from 5 to almost 70 cm. The extreme cases represent some of the highest Reynolds number and largest scale homogeneous turbulent flows ever generated in a wind tunnel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On the generation of large-scale homogeneous turbulence

Loading next page...
 
/lp/springer_journal/on-the-generation-of-large-scale-homogeneous-turbulence-Y50akDYgKJ
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Fluid- and Aerodynamics; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0974-1
Publisher site
See Article on Publisher Site

Abstract

An active turbulence generating grid, based on the rotating-vane design of Makita (1991), was developed for a large wind tunnel. At 2.14 m square, the grid is the largest of this type ever developed. To improve the isotropy of the turbulence generated, the grid was placed in the wind tunnel contraction. Measurements show that the grid produces a closely uniform mean flow and homogeneous isotropic turbulence to within two integral scales from the wall. By systematically varying the flow speed and parameters controlling the random motion of the vanes, grid turbulence with a wide variety of characteristics was produced and the dependence of those characteristics on the operating parameters of the grid revealed. Taylor Reynolds numbers of the grid turbulence varied from 100 to 1,360 and integral scales from 5 to almost 70 cm. The extreme cases represent some of the highest Reynolds number and largest scale homogeneous turbulent flows ever generated in a wind tunnel.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 5, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off