On the Formulation of Anisotropic–Polyaxial Failure Criteria: A Comparative Study

On the Formulation of Anisotropic–Polyaxial Failure Criteria: A Comparative Study The correct representation of the failure of geomaterials that feature strength anisotropy and polyaxiality is crucial for many applications. In this contribution, we propose and evaluate through a comparative study a generalized framework that covers both features. Polyaxiality of strength is modeled with a modified Van Eekelen approach, while the anisotropy is modeled using a fabric tensor approach of the Pietruszczak and Mroz type. Both approaches share the same philosophy as they can be applied to simpler failure surfaces, allowing great flexibility in model formulation. The new failure surface is tested against experimental data and its performance compared against classical failure criteria commonly used in geomechanics. Our study finds that the global error between predictions and data is generally smaller for the proposed framework compared to other classical approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Rock Mechanics and Rock Engineering Springer Journals

On the Formulation of Anisotropic–Polyaxial Failure Criteria: A Comparative Study

Loading next page...
 
/lp/springer_journal/on-the-formulation-of-anisotropic-polyaxial-failure-criteria-a-o7V79y8o4F
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Austria
Subject
Earth Sciences; Geophysics/Geodesy; Civil Engineering
ISSN
0723-2632
eISSN
1434-453X
D.O.I.
10.1007/s00603-017-1330-z
Publisher site
See Article on Publisher Site

Abstract

The correct representation of the failure of geomaterials that feature strength anisotropy and polyaxiality is crucial for many applications. In this contribution, we propose and evaluate through a comparative study a generalized framework that covers both features. Polyaxiality of strength is modeled with a modified Van Eekelen approach, while the anisotropy is modeled using a fabric tensor approach of the Pietruszczak and Mroz type. Both approaches share the same philosophy as they can be applied to simpler failure surfaces, allowing great flexibility in model formulation. The new failure surface is tested against experimental data and its performance compared against classical failure criteria commonly used in geomechanics. Our study finds that the global error between predictions and data is generally smaller for the proposed framework compared to other classical approaches.

Journal

Rock Mechanics and Rock EngineeringSpringer Journals

Published: Sep 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off