On the fluid–structure interaction of a splitter plate: vibration modes and Reynolds number effects

On the fluid–structure interaction of a splitter plate: vibration modes and Reynolds number... Previous work (Eloranta et al. in Exp Fluids 39:841–855, 2005) has shown that flow separation from the trailing edge of a splitter plate in a convergent channel involves a fluid–structure interaction (FSI), which modifies the fundamental instability related to vortex shedding. Under certain conditions, the FSI induces cellular vortex shedding from the trailing edge. This paper reports detailed measurements of the plate vibration mode and studies the effect of the Reynolds number on the FSI. Experimental techniques including laser vibrometer and digital imaging are used to measure the response of the plate and particle image velocimetry is used to measure the flow field in the near wake. Combining data from these techniques, the development of the vibration frequency and mode can be addressed together with the imprint of the vibration mode in the flow. The results show that over most of the Reynolds numbers measured, the plate vibrates in a distinct mode characterized by a spanwise standing wave along the plate trailing edge. The vibration frequency and the spacing between the nodes of the standing wave depend on the Reynolds number. As the Reynolds number is increased, the frequency of the dominant vibration mode does not increase linearly. The plot of the vibration frequency as a function of the Reynolds number shows that the vibration tends to lock to a rather constant frequency over of range of Reynolds numbers. After certain Reynolds number if threshold is exceeded, the frequency jumps to a new level, which also involves a new vibration mode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On the fluid–structure interaction of a splitter plate: vibration modes and Reynolds number effects

Loading next page...
 
/lp/springer_journal/on-the-fluid-structure-interaction-of-a-splitter-plate-vibration-modes-LDv7dX7c8R
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0157-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial