On the feasibility of tomographic-PIV with low pulse energy illumination in a lifted turbulent jet flame

On the feasibility of tomographic-PIV with low pulse energy illumination in a lifted turbulent... Tomographic particle image velocimetry (tomographic-PIV) is a recently developed measurement technique used to acquire volumetric velocity field data in liquid and gaseous flows. The technique relies on line-of-sight reconstruction of the rays between a 3D particle distribution and a multi-camera imaging system. In a turbulent flame, however, index-of-refraction variations resulting from local heat-release may inhibit reconstruction and thereby render the technique infeasible. The objective of this study was to test the efficacy of tomographic-PIV in a turbulent flame. An additional goal was to determine the feasibility of acquiring usable tomographic-PIV measurements in a turbulent flame at multi-kHz acquisition rates with current-generation laser and camera technology. To this end, a setup consisting of four complementary metal oxide semiconductor cameras and a dual-cavity Nd:YAG laser was implemented to test the technique in a lifted turbulent jet flame. While the cameras were capable of kHz-rate image acquisition, the laser operated at a pulse repetition rate of only 10 Hz. However, use of this laser allowed exploration of the required pulse energy and thus power for a kHz-rate system. The imaged region was 29 × 28 × 2.7 mm in size. The tomographic reconstruction of the 3D particle distributions was accomplished using the multiplicative algebraic reconstruction technique. The results indicate that volumetric velocimetry via tomographic-PIV is feasible with pulse energies of 25 mJ, which is within the capability of current-generation kHz-rate diode-pumped solid-state lasers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On the feasibility of tomographic-PIV with low pulse energy illumination in a lifted turbulent jet flame

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial