On the fairness improvement of channel scheduling in optical burst-switched networks

On the fairness improvement of channel scheduling in optical burst-switched networks In the past years, several signaling protocols were proposed for OBS networks and the most popular one is the Just-Enough-Time (JET) protocol. JET not only efficiently utilizes the network capacity, but also effectively reduces the end-to-end transmission delay. However, the most critical defect of JET is its intrinsic deficiency: Fairness. The fairness problem is a traditional problem common to various kinds of networks. It results in a phenomenon that bursts with a shorter number of hops are generally favorized and hence deteriorates the network utilization as well. In this article, we investigate this problem and propose a fair channel scheduling algorithm as a solution. Usually there is a tradeoff between fairness and blocking performance. Accordingly, the objective of our scheme is to achieve a balance between the two conflicting metrics as much as possible. In our scheme, each burst is associated with a dynamic priority which is defined by several characteristics of the burst. When contention occurs, the proposed scheme picks the preferable burst and drops the other one according to their priorities. From simulation results, we observed that the proposed scheme could improve fairness without causing significant reduction in dropping performance. Furthermore, it increases the effective link utilization as well. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the fairness improvement of channel scheduling in optical burst-switched networks

Loading next page...
 
/lp/springer_journal/on-the-fairness-improvement-of-channel-scheduling-in-optical-burst-lI20Cy3b2H
Publisher
Springer US
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-007-0087-9
Publisher site
See Article on Publisher Site

Abstract

In the past years, several signaling protocols were proposed for OBS networks and the most popular one is the Just-Enough-Time (JET) protocol. JET not only efficiently utilizes the network capacity, but also effectively reduces the end-to-end transmission delay. However, the most critical defect of JET is its intrinsic deficiency: Fairness. The fairness problem is a traditional problem common to various kinds of networks. It results in a phenomenon that bursts with a shorter number of hops are generally favorized and hence deteriorates the network utilization as well. In this article, we investigate this problem and propose a fair channel scheduling algorithm as a solution. Usually there is a tradeoff between fairness and blocking performance. Accordingly, the objective of our scheme is to achieve a balance between the two conflicting metrics as much as possible. In our scheme, each burst is associated with a dynamic priority which is defined by several characteristics of the burst. When contention occurs, the proposed scheme picks the preferable burst and drops the other one according to their priorities. From simulation results, we observed that the proposed scheme could improve fairness without causing significant reduction in dropping performance. Furthermore, it increases the effective link utilization as well.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Sep 1, 2007

References

  • Terabit burst switching
    Turner, J.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off