On the effects of free-stream turbulence on axisymmetric disc wakes

On the effects of free-stream turbulence on axisymmetric disc wakes Wind tunnel experiments have been used to study the effects of free-stream turbulence on the axisymmetric wake behind a disc. The disc and its wake were introduced to various turbulent streams having various levels of turbulence intensity and length scale. It was found that the presence of free-stream turbulence enhances the body’s drag and hence wake momentum deficit, if it is of sufficient strength, changes the far wake’s decay rate and prevents the appearance of self-similarity. The external turbulence causes a significant transformation in the wake’s turbulence structure. This gradually evolves towards the character of the free-stream turbulence itself and thus is characterised by much weaker turbulence (cross-stream) transport processes and a consequent dominance of shear stress production, which acts to maintain the shear stress and mean velocity profiles. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On the effects of free-stream turbulence on axisymmetric disc wakes

Loading next page...
 
/lp/springer_journal/on-the-effects-of-free-stream-turbulence-on-axisymmetric-disc-wakes-kBGWeQK7zQ
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-012-1288-2
Publisher site
See Article on Publisher Site

Abstract

Wind tunnel experiments have been used to study the effects of free-stream turbulence on the axisymmetric wake behind a disc. The disc and its wake were introduced to various turbulent streams having various levels of turbulence intensity and length scale. It was found that the presence of free-stream turbulence enhances the body’s drag and hence wake momentum deficit, if it is of sufficient strength, changes the far wake’s decay rate and prevents the appearance of self-similarity. The external turbulence causes a significant transformation in the wake’s turbulence structure. This gradually evolves towards the character of the free-stream turbulence itself and thus is characterised by much weaker turbulence (cross-stream) transport processes and a consequent dominance of shear stress production, which acts to maintain the shear stress and mean velocity profiles.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 18, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off