On the Dynamics of Homeomorphisms on the Unit Ball of Rn

On the Dynamics of Homeomorphisms on the Unit Ball of Rn Consider a compact convex subset X of R n (n ≥ 2) with non-empty interior and let H(X) be the set of all homeomorphisms from X onto X endowed with the supremum metric. We are interested in studying the dynamics of functions in H(X) from the following point of view: Which properties are satisfied by ''most'' functions in H(X), in the sense that the set of all functions in H(X) that do not satisfy the given property is of the first category? We prove that most functions in H(X) have uncountably many periodic points of period m, for each m ≥ 1, but have no attractive cycles. Also, for most functions f ≥ H(X), the set of all periodic points of f has no isolated points, is nowhere dense, has infinitely many connected components, is nowhere closed, is dense in the set of all non-wandering points of f, and has Lebesgue measure zero. Moreover, most functions in H(X) are not sensitive to initial conditions on any subset of X that is somewhere dense, but are sensitive to initial conditions on an uncountable closed connected subset of X. Finally, we prove that most functions in H(X) have infinitely many pairwise disjoint uniform attractors with certain properties, but have no attractors with a dense orbit (hence, no strange attractors). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

On the Dynamics of Homeomorphisms on the Unit Ball of Rn

Loading next page...
 
/lp/springer_journal/on-the-dynamics-of-homeomorphisms-on-the-unit-ball-of-rn-PIoBkX4lds
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1999 by Kluwer Academic Publishers
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1023/A:1009750622797
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial