On the detection of Cardiac Arrhythmia with Principal Component Analysis

On the detection of Cardiac Arrhythmia with Principal Component Analysis The Electrocardiogram (ECG) signal is used to record the electrical activity of heart. The subtle variations in ECG attributes are used by cardiologists for diagnosis of heart anomalies. But, for prognosis of cardiac ailments feature extraction from electrocardiographic signal becomes extremely difficult due to presence of noise. With the aim of noise reduction, a hybrid technique involving Extended Kalman filter along with Discrete Wavelet transform for effectively improving signal quality is focused as a powerful tool. The performance of denoising algorithm is evaluated in terms of signal to noise ratio and mean square error. On denoised signal, a quick, simple and effectual approach based on Principal Component Analysis is proposed for R-peak and QRS complex detection. The beat detector performance is validated with MIT-BIH arrhythmia database, yielding a sensitivity of 99.93%, positive predictivity of 99.98% and a 0.079% detection error rate, being a positive outcome in comparison with recent researches. Later, different types of arrhythmias are detected on the basis of heart rate and morphological characteristics of ECG waveform. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

On the detection of Cardiac Arrhythmia with Principal Component Analysis

Loading next page...
 
/lp/springer_journal/on-the-detection-of-cardiac-arrhythmia-with-principal-component-9Rae1uhjaV
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4791-1
Publisher site
See Article on Publisher Site

Abstract

The Electrocardiogram (ECG) signal is used to record the electrical activity of heart. The subtle variations in ECG attributes are used by cardiologists for diagnosis of heart anomalies. But, for prognosis of cardiac ailments feature extraction from electrocardiographic signal becomes extremely difficult due to presence of noise. With the aim of noise reduction, a hybrid technique involving Extended Kalman filter along with Discrete Wavelet transform for effectively improving signal quality is focused as a powerful tool. The performance of denoising algorithm is evaluated in terms of signal to noise ratio and mean square error. On denoised signal, a quick, simple and effectual approach based on Principal Component Analysis is proposed for R-peak and QRS complex detection. The beat detector performance is validated with MIT-BIH arrhythmia database, yielding a sensitivity of 99.93%, positive predictivity of 99.98% and a 0.079% detection error rate, being a positive outcome in comparison with recent researches. Later, different types of arrhythmias are detected on the basis of heart rate and morphological characteristics of ECG waveform.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 14, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial