On the correlation between size and metric validity

On the correlation between size and metric validity Empirical validation of code metrics has a long history of success. Many metrics have been shown to be good predictors of external features, such as correlation to bugs. Our study provides an alternative explanation to such validation, attributing it to the confounding effect of size. In contradiction to received wisdom, we argue that the validity of a metric can be explained by its correlation to the size of the code artifact. In fact, this work came about in view of our failure in the quest of finding a metric that is both valid and free of this confounding effect. Our main discovery is that, with the appropriate (non-parametric) transformations, the validity of a metric can be accurately (with R-squared values being at times as high as 0.97) predicted from its correlation with size. The reported results are with respect to a suite of 26 metrics, that includes the famous Chidamber and Kemerer metrics. Concretely, it is shown that the more a metric is correlated with size, the more able it is to predict external features values, and vice-versa. We consider two methods for controlling for size, by linear transformations. As it turns out, metrics controlled for size, tend to eliminate their predictive capabilities. We also show that the famous Chidamber and Kemerer metrics are no better than other metrics in our suite. Overall, our results suggest code size is the only “unique” valid metric. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Empirical Software Engineering Springer Journals

On the correlation between size and metric validity

Loading next page...
 
/lp/springer_journal/on-the-correlation-between-size-and-metric-validity-I3RoCanNxo
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Software Engineering/Programming and Operating Systems; Programming Languages, Compilers, Interpreters
ISSN
1382-3256
eISSN
1573-7616
D.O.I.
10.1007/s10664-017-9513-5
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial