On the construction of stabilizer codes with an arbitrary binary matrix

On the construction of stabilizer codes with an arbitrary binary matrix This paper proposes a simple framework for constructing a stabilizer code with an arbitrary binary matrix. We define a relation between A 1 and A 2 of a binary check matrix A = (A 1|A 2) associated with stabilizer generators of a quantum error-correcting code. Given an arbitrary binary matrix, we can derive a pair of A 1 and A 2 by the relation. As examples, we illustrate two kinds of stabilizer codes: quantum LDPC codes and quantum convolutional codes. By the nature of the proposed framework, the stabilizer codes covered in this paper belong to general stabilizer (non-CSS) codes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

On the construction of stabilizer codes with an arbitrary binary matrix

Loading next page...
 
/lp/springer_journal/on-the-construction-of-stabilizer-codes-with-an-arbitrary-binary-RAltNvCi3z
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-012-0394-7
Publisher site
See Article on Publisher Site

Abstract

This paper proposes a simple framework for constructing a stabilizer code with an arbitrary binary matrix. We define a relation between A 1 and A 2 of a binary check matrix A = (A 1|A 2) associated with stabilizer generators of a quantum error-correcting code. Given an arbitrary binary matrix, we can derive a pair of A 1 and A 2 by the relation. As examples, we illustrate two kinds of stabilizer codes: quantum LDPC codes and quantum convolutional codes. By the nature of the proposed framework, the stabilizer codes covered in this paper belong to general stabilizer (non-CSS) codes.

Journal

Quantum Information ProcessingSpringer Journals

Published: Mar 23, 2012

References

  • High performance entanglement-assisted quantum LDPC codes need little entanglement
    Hsieh, M.H.; Yen, W.T.; Hsu, L.Y.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off