On the complex domain deep machine learning for face recognition

On the complex domain deep machine learning for face recognition Biometric based verification and recognition has become the center of attention for many significant applications for security conscious societies, as it is believed that biometrics can provide accurate and reliable identification. The face biometrics are one that possesses the merits of both high accuracy and low intrusiveness. An efficient machine recognition of human faces in big dataset is both important and challenging tasks. This paper addresses an intelligent face recognition system that is pose invariant and can recognize multi-expression, occluded and blurred faces through efficient but compact deep learning. Superior functionality of neural network in a complex domain has been observed in recent researches. My work presents a new approach, which is the fusion of higher-order novel neuron models with multivariate statistical techniques in a complex domain with a sole goal of improving performance of biometric systems. This also aims at reducing the computational cost and providing a faster recognition system. This paper presents the formal algorithms for feature extraction with multivariate statistical techniques in complex domain and compare them their real domain counterpart. This paper also presents a classifier structure (OCON : One-Class-in-One-Neuron) which contains an ensemble of novel higher order neurons, which drastically reduces the complexity of proposed learning machine because only single neuron is sufficient to recognize a subject in the database. This novel fusion in the proposed deep learning machine has thoroughly presented its superiority over a wide spectrum of experiments. Advanced deep learning capabilities, and complex domain implementation in particular, are significantly advancing state-of-art in computer vision and pattern recognition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Intelligence Springer Journals

On the complex domain deep machine learning for face recognition

Loading next page...
 
/lp/springer_journal/on-the-complex-domain-deep-machine-learning-for-face-recognition-rL0uiI9ZhJ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Mechanical Engineering; Manufacturing, Machines, Tools
ISSN
0924-669X
eISSN
1573-7497
D.O.I.
10.1007/s10489-017-0902-7
Publisher site
See Article on Publisher Site

Abstract

Biometric based verification and recognition has become the center of attention for many significant applications for security conscious societies, as it is believed that biometrics can provide accurate and reliable identification. The face biometrics are one that possesses the merits of both high accuracy and low intrusiveness. An efficient machine recognition of human faces in big dataset is both important and challenging tasks. This paper addresses an intelligent face recognition system that is pose invariant and can recognize multi-expression, occluded and blurred faces through efficient but compact deep learning. Superior functionality of neural network in a complex domain has been observed in recent researches. My work presents a new approach, which is the fusion of higher-order novel neuron models with multivariate statistical techniques in a complex domain with a sole goal of improving performance of biometric systems. This also aims at reducing the computational cost and providing a faster recognition system. This paper presents the formal algorithms for feature extraction with multivariate statistical techniques in complex domain and compare them their real domain counterpart. This paper also presents a classifier structure (OCON : One-Class-in-One-Neuron) which contains an ensemble of novel higher order neurons, which drastically reduces the complexity of proposed learning machine because only single neuron is sufficient to recognize a subject in the database. This novel fusion in the proposed deep learning machine has thoroughly presented its superiority over a wide spectrum of experiments. Advanced deep learning capabilities, and complex domain implementation in particular, are significantly advancing state-of-art in computer vision and pattern recognition.

Journal

Applied IntelligenceSpringer Journals

Published: Mar 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off