The Colmez conjecture relates the Faltings height of an abelian variety with complex multiplication by the ring of integers of a CM field E to logarithmic derivatives of Artin L-functions at $$s=0$$ s = 0 . In this paper, we prove that if F is any fixed totally real number field of degree $$[F:\mathbb {Q}] \ge 3$$ [ F : Q ] ≥ 3 , then there are infinitely many effective, “positive density” sets of CM extensions E / F such that $$E/\mathbb {Q}$$ E / Q is non-abelian and the Colmez conjecture is true for E. Moreover, these CM extensions are explicitly constructed to be ramified at arbitrary prescribed sets of prime ideals of F. We also prove that the Colmez conjecture is true for a generic class of non-abelian CM fields called Weyl CM fields, and use this to develop an arithmetic statistics approach to the Colmez conjecture based on counting CM fields of fixed degree and bounded discriminant. We illustrate these results by evaluating the Faltings height of the Jacobian of a genus 2 hyperelliptic curve with complex multiplication by a non-abelian quartic CM field in terms of the Barnes double Gamma function at algebraic arguments. This can be viewed as an explicit non-abelian Chowla–Selberg formula. Our results rely crucially on an averaged version of the Colmez conjecture which was recently proved independently by Andreatta–Goren–Howard–Madapusi Pera and Yuan–Zhang.
Research in the Mathematical Sciences – Springer Journals
Published: Feb 8, 2018
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create lists to | ||
Export lists, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
PDF Discount | 20% off | |
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.
ok to continue