On the blocking time distribution of core OBS switches

On the blocking time distribution of core OBS switches Given the bufferless nature of Optical Burst- Switched networks, data bursts are either transmitted or dropped; the latter typically occurs when all the wavelengths of a given output port are occupied. Clearly, the amount of time during which a given output port is blocked and cannot schedule incoming data bursts is a key performance measure of OBS networks. This work shows that, under Poissonian burst arrivals, the blocking time distribution of a given output port in an OBS node approaches the exponential distribution as the number of wavelengths increases. It is further shown that this behavior remains regardless of the size distribution of incoming bursts, and therefore, regardless of the burst-assembly algorithms employed at the border nodes. Finally, this result is also applied to the characterization of the amount of overspill traffic, that is, the number of bursts that arrive within a blocked period, and therefore must be either dropped or diverted over alternative routes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the blocking time distribution of core OBS switches

Loading next page...
 
/lp/springer_journal/on-the-blocking-time-distribution-of-core-obs-switches-aw9OP8YKZH
Publisher
Springer US
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-009-0194-x
Publisher site
See Article on Publisher Site

Abstract

Given the bufferless nature of Optical Burst- Switched networks, data bursts are either transmitted or dropped; the latter typically occurs when all the wavelengths of a given output port are occupied. Clearly, the amount of time during which a given output port is blocked and cannot schedule incoming data bursts is a key performance measure of OBS networks. This work shows that, under Poissonian burst arrivals, the blocking time distribution of a given output port in an OBS node approaches the exponential distribution as the number of wavelengths increases. It is further shown that this behavior remains regardless of the size distribution of incoming bursts, and therefore, regardless of the burst-assembly algorithms employed at the border nodes. Finally, this result is also applied to the characterization of the amount of overspill traffic, that is, the number of bursts that arrive within a blocked period, and therefore must be either dropped or diverted over alternative routes.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Feb 24, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off