On the benefits of multi-path recovery in flexgrid optical networks

On the benefits of multi-path recovery in flexgrid optical networks We propose a new recovery scheme, called multi-path recovery (MPR), specifically designed for flexgrid-based optical networks. It combines protection and restoration schemes to jointly recover, in part or totally, the bitrate requested by client demands in case of failure. We define the bitrate squeezed recovery optimization (BRASERO) problem to maximize the amount of bitrate which is recovered in case of failure of any single fiber link; a mixed integer linear programming formulation for the BRASERO problem is provided. However, since their exact solutions become impractical when real-sized network and traffic instances are considered, we develop a heuristic algorithm which provides a much better trade-off between optimality and complexity. Exhaustive numerical experiments carried out over realistic network topologies and traffic scenarios show that the efficiency of the proposed MPR scheme approaches that of restoration while providing recovery times as short as protection schemes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

On the benefits of multi-path recovery in flexgrid optical networks

Loading next page...
 
/lp/springer_journal/on-the-benefits-of-multi-path-recovery-in-flexgrid-optical-networks-2x3I0KJ0kd
Publisher
Springer US
Copyright
Copyright © 2014 by Springer Science+Business Media New York
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-014-0443-5
Publisher site
See Article on Publisher Site

Abstract

We propose a new recovery scheme, called multi-path recovery (MPR), specifically designed for flexgrid-based optical networks. It combines protection and restoration schemes to jointly recover, in part or totally, the bitrate requested by client demands in case of failure. We define the bitrate squeezed recovery optimization (BRASERO) problem to maximize the amount of bitrate which is recovered in case of failure of any single fiber link; a mixed integer linear programming formulation for the BRASERO problem is provided. However, since their exact solutions become impractical when real-sized network and traffic instances are considered, we develop a heuristic algorithm which provides a much better trade-off between optimality and complexity. Exhaustive numerical experiments carried out over realistic network topologies and traffic scenarios show that the efficiency of the proposed MPR scheme approaches that of restoration while providing recovery times as short as protection schemes.

Journal

Photonic Network CommunicationsSpringer Journals

Published: May 25, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off