On the accuracy of dynamic mode decomposition in estimating instability of wave packet

On the accuracy of dynamic mode decomposition in estimating instability of wave packet Lots of unstable flows in both nature and engineering pose multi-scale perturbations with infinitesimal initial amplitude, which compete and interact with each other during their unstable evolution. Dynamic mode decomposition (DMD) analysis can be used to extract these components’ temporal/spatial growth rate. Therefore, it is necessary to evaluate the accuracy performance and confidence limit of DMD algorithm in the circumstance of multi-scale instability wave packet. In the present study, we use a linear combination of a sinusoidal unstable wave and its high-order harmonics as a prototype, based on which an error analysis of DMD algorithm is taken. In first, different numerical algorithms of DMD analysis are compared in terms of both accuracy and efficiency. The accuracy evaluation of the classical DMD algorithm in a large parameter domain is followed. It is found that the superimposition of finer structures with less energy dominance might damage the estimation accuracy of the primary structures’ growth rate. Strong evidences suggest that even in a linear circumstance, resolving the dynamics of small-scale structures is comparably more difficult than that of the primary structures, i.e., DMD algorithm has a preference for structures with energetic dominance. Finally, the recommended thresholds for the sampling/discretizing parameters are summarized for practical usage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On the accuracy of dynamic mode decomposition in estimating instability of wave packet

Loading next page...
Springer Berlin Heidelberg
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial