On robust duality for fractional programming with uncertainty data

On robust duality for fractional programming with uncertainty data In this paper, we present a duality theory for fractional programming problems in the face of data uncertainty via robust optimization. By employing conjugate analysis, we establish robust strong duality for an uncertain fractional programming problem and its uncertain Wolfe dual programming problem by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. We show that our results encompass as special cases some programming problems considered in the recent literature. Moreover, we also show that robust strong duality always holds for linear fractional programming problems under scenario data uncertainty or constraint-wise interval uncertainty, and that the optimistic counterpart of the dual is tractable computationally. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Positivity Springer Journals

On robust duality for fractional programming with uncertainty data

Positivity , Volume 18 (1) – Feb 12, 2013
Loading next page...
 
/lp/springer_journal/on-robust-duality-for-fractional-programming-with-uncertainty-data-po1uJ9rbyD
Publisher
Springer Basel
Copyright
Copyright © 2013 by Springer Basel
Subject
Mathematics; Fourier Analysis; Operator Theory; Potential Theory; Calculus of Variations and Optimal Control; Optimization; Econometrics
ISSN
1385-1292
eISSN
1572-9281
D.O.I.
10.1007/s11117-013-0227-7
Publisher site
See Article on Publisher Site

Abstract

In this paper, we present a duality theory for fractional programming problems in the face of data uncertainty via robust optimization. By employing conjugate analysis, we establish robust strong duality for an uncertain fractional programming problem and its uncertain Wolfe dual programming problem by showing strong duality between the deterministic counterparts: robust counterpart of the primal model and the optimistic counterpart of its dual problem. We show that our results encompass as special cases some programming problems considered in the recent literature. Moreover, we also show that robust strong duality always holds for linear fractional programming problems under scenario data uncertainty or constraint-wise interval uncertainty, and that the optimistic counterpart of the dual is tractable computationally.

Journal

PositivitySpringer Journals

Published: Feb 12, 2013

References

  • Li, G.Y: Lagrange multiplier characterizations of robust best approximations under constraint data uncertainty
    Jeyakumar, V; Wang, JH

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off