On PIV random error minimization with optimal POD-based low-order reconstruction

On PIV random error minimization with optimal POD-based low-order reconstruction Random noise removal from particle image velocimetry (PIV) data and spectra is of paramount importance, especially for the computation of derivative quantities and spectra. Data filtering is critical, as a trade-off between filter effectiveness and spatial resolution penalty should be found. In this paper, a filtering method based on proper orthogonal decomposition and low-order reconstruction (LOR) is proposed. The existence of an optimal number of modes based on the minimization of both reconstruction error and signal withdrawal is demonstrated. A criterion to perform the choice of the optimal number of modes is proposed. The method is validated via synthetic and real experiments. As prototype problems, we consider PIV vector fields obtained from channel flow DNS data and from PIV measurement in the wake of a circular cylinder. We determine the optimal number of modes to be used for the LOR in order to minimize the statistical random error. The results highlight a significant reduction in the measurement error. Dynamic velocity range is enhanced, enabling to correctly capture spectral information of small turbulent scales down to the half of the cutoff wavelength of original data. In addition to this, the capability of detecting coherent structures is improved. The robustness of the method is proved, both for low signal-to-noise ratios and for small-sized ensembles. The proposed method can significantly improve the physical insight into the investigation of turbulent flows. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On PIV random error minimization with optimal POD-based low-order reconstruction

Loading next page...
 
/lp/springer_journal/on-piv-random-error-minimization-with-optimal-pod-based-low-order-hL9mk8PQu8
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2015 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-015-1940-8
Publisher site
See Article on Publisher Site

Abstract

Random noise removal from particle image velocimetry (PIV) data and spectra is of paramount importance, especially for the computation of derivative quantities and spectra. Data filtering is critical, as a trade-off between filter effectiveness and spatial resolution penalty should be found. In this paper, a filtering method based on proper orthogonal decomposition and low-order reconstruction (LOR) is proposed. The existence of an optimal number of modes based on the minimization of both reconstruction error and signal withdrawal is demonstrated. A criterion to perform the choice of the optimal number of modes is proposed. The method is validated via synthetic and real experiments. As prototype problems, we consider PIV vector fields obtained from channel flow DNS data and from PIV measurement in the wake of a circular cylinder. We determine the optimal number of modes to be used for the LOR in order to minimize the statistical random error. The results highlight a significant reduction in the measurement error. Dynamic velocity range is enhanced, enabling to correctly capture spectral information of small turbulent scales down to the half of the cutoff wavelength of original data. In addition to this, the capability of detecting coherent structures is improved. The robustness of the method is proved, both for low signal-to-noise ratios and for small-sized ensembles. The proposed method can significantly improve the physical insight into the investigation of turbulent flows.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 25, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off