On Joint Modelling of Electrical Conductivity and Other Geophysical and Petrological Observables to Infer the Structure of the Lithosphere and Underlying Upper Mantle

On Joint Modelling of Electrical Conductivity and Other Geophysical and Petrological Observables... This review paper focuses on joint modelling and interpretation of electromagnetic data and other geophysical and petrological observables. In particular, integrated geophysical–petrological modelling approaches, where the electrical conductivity and other physical properties of rocks are required to be linked by the common subsurface thermochemical conditions within a self-consistent thermodynamic framework, are reviewed. The paper gives an overview of the main geophysical electromagnetic techniques/data sets employed in lithospheric and mantle imaging including recent advances using satellite data, and an up-to-date summary of the most relevant laboratory experiments regarding the electrical conductivity of upper mantle minerals for various temperature–pressure–water conditions. The sensitivity of electrical conductivity and other geophysical parameters (density, seismic velocities) of mantle rocks to changes in temperature and composition are presented based on a Monte Carlo method parameter exploration. Finally, a case study in Central Tibet is presented where both seismological (long-period surface wave phase velocities) and electromagnetic (magnetotelluric) data—simultaneously including the constraints offered by topography, surface heat flow and mantle xenoliths—have been integrated. The modelling is based on a self-consistent petrological-geophysical thermodynamic framework where mantle properties are calculated as a function of temperature, pressure, and composition. The Tibetan case study offers an excellent opportunity to illustrate the different and complementary sensitivities of the various data sets used and to show how integrated thermochemical models of the lithosphere can help understand settings with a complex tectonic evolution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Surveys in Geophysics Springer Journals

On Joint Modelling of Electrical Conductivity and Other Geophysical and Petrological Observables to Infer the Structure of the Lithosphere and Underlying Upper Mantle

Loading next page...
 
/lp/springer_journal/on-joint-modelling-of-electrical-conductivity-and-other-geophysical-1I0ADjzln4
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Earth Sciences; Geophysics/Geodesy; Earth Sciences, general; Astronomy, Observations and Techniques
ISSN
0169-3298
eISSN
1573-0956
D.O.I.
10.1007/s10712-017-9432-4
Publisher site
See Article on Publisher Site

Abstract

This review paper focuses on joint modelling and interpretation of electromagnetic data and other geophysical and petrological observables. In particular, integrated geophysical–petrological modelling approaches, where the electrical conductivity and other physical properties of rocks are required to be linked by the common subsurface thermochemical conditions within a self-consistent thermodynamic framework, are reviewed. The paper gives an overview of the main geophysical electromagnetic techniques/data sets employed in lithospheric and mantle imaging including recent advances using satellite data, and an up-to-date summary of the most relevant laboratory experiments regarding the electrical conductivity of upper mantle minerals for various temperature–pressure–water conditions. The sensitivity of electrical conductivity and other geophysical parameters (density, seismic velocities) of mantle rocks to changes in temperature and composition are presented based on a Monte Carlo method parameter exploration. Finally, a case study in Central Tibet is presented where both seismological (long-period surface wave phase velocities) and electromagnetic (magnetotelluric) data—simultaneously including the constraints offered by topography, surface heat flow and mantle xenoliths—have been integrated. The modelling is based on a self-consistent petrological-geophysical thermodynamic framework where mantle properties are calculated as a function of temperature, pressure, and composition. The Tibetan case study offers an excellent opportunity to illustrate the different and complementary sensitivities of the various data sets used and to show how integrated thermochemical models of the lithosphere can help understand settings with a complex tectonic evolution.

Journal

Surveys in GeophysicsSpringer Journals

Published: Oct 4, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial