Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

On hot-wire diagnostics in Rayleigh–Taylor mixing layers

On hot-wire diagnostics in Rayleigh–Taylor mixing layers Two hot-wire flow diagnostics have been developed to measure a variety of turbulence statistics in the buoyancy driven, air-helium Rayleigh–Taylor mixing layer. The first diagnostic uses a multi-position, multi-overheat (MPMO) single wire technique that is based on evaluating the wire response function to variations in density, velocity and orientation, and gives time-averaged statistics inside the mixing layer. The second diagnostic utilizes the concept of temperature as a fluid marker, and employs a simultaneous three-wire/cold-wire anemometry technique (S3WCA) to measure instantaneous statistics. Both of these diagnostics have been validated in a low Atwood number (A t  ≤ 0.04), small density difference regime, that allowed validation of the diagnostics with similar experiments done in a hot-water/cold-water water channel facility. Good agreement is found for the measured growth parameters for the mixing layer, velocity fluctuation anisotropy, velocity fluctuation p.d.f behavior, and measurements of molecular mixing. We describe in detail the MPMO and S3WCA diagnostics, and the validation measurements in the low Atwood number regime (A t  ≤ 0.04). We also outline the advantages of each technique for measurement of turbulence statistics in fluid mixtures with large density differences. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On hot-wire diagnostics in Rayleigh–Taylor mixing layers

Loading next page...
 
/lp/springer_journal/on-hot-wire-diagnostics-in-rayleigh-taylor-mixing-layers-K0jYiW0bwn

References (47)

Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
DOI
10.1007/s00348-009-0636-3
Publisher site
See Article on Publisher Site

Abstract

Two hot-wire flow diagnostics have been developed to measure a variety of turbulence statistics in the buoyancy driven, air-helium Rayleigh–Taylor mixing layer. The first diagnostic uses a multi-position, multi-overheat (MPMO) single wire technique that is based on evaluating the wire response function to variations in density, velocity and orientation, and gives time-averaged statistics inside the mixing layer. The second diagnostic utilizes the concept of temperature as a fluid marker, and employs a simultaneous three-wire/cold-wire anemometry technique (S3WCA) to measure instantaneous statistics. Both of these diagnostics have been validated in a low Atwood number (A t  ≤ 0.04), small density difference regime, that allowed validation of the diagnostics with similar experiments done in a hot-water/cold-water water channel facility. Good agreement is found for the measured growth parameters for the mixing layer, velocity fluctuation anisotropy, velocity fluctuation p.d.f behavior, and measurements of molecular mixing. We describe in detail the MPMO and S3WCA diagnostics, and the validation measurements in the low Atwood number regime (A t  ≤ 0.04). We also outline the advantages of each technique for measurement of turbulence statistics in fluid mixtures with large density differences.

Journal

Experiments in FluidsSpringer Journals

Published: Mar 5, 2009

There are no references for this article.