# On Factorization of Analytic Functions and Its Verification

On Factorization of Analytic Functions and Its Verification An interval method for finding a polynomial factor of an analytic function f(z) is proposed. By using a Samelson-like method recursively, we obtain a sequence of polynomials that converges to a factor p*(z) of f(z) if an initial approximate factor p(z) is sufficiently close to p*(z). This method includes some well known iterative formulae, and has a close relation to a rational approximation. According to this factoring method, a fixed point relation for p*(z) is derived. Based on this relation, we obtain a polynomial with complex interval coefficients that includes p*(z). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

# On Factorization of Analytic Functions and Its Verification

, Volume 6 (4) – Oct 16, 2004
12 pages

/lp/springer_journal/on-factorization-of-analytic-functions-and-its-verification-370vukweTg
Publisher
Springer Journals
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1009931231719
Publisher site
See Article on Publisher Site

### Abstract

An interval method for finding a polynomial factor of an analytic function f(z) is proposed. By using a Samelson-like method recursively, we obtain a sequence of polynomials that converges to a factor p*(z) of f(z) if an initial approximate factor p(z) is sufficiently close to p*(z). This method includes some well known iterative formulae, and has a close relation to a rational approximation. According to this factoring method, a fixed point relation for p*(z) is derived. Based on this relation, we obtain a polynomial with complex interval coefficients that includes p*(z).

### Journal

Reliable ComputingSpringer Journals

Published: Oct 16, 2004

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations