On determining wall shear stress in spatially developing two-dimensional wall-bounded flows

On determining wall shear stress in spatially developing two-dimensional wall-bounded flows A full momentum integral-based method for determining wall shear stress is presented. The method is mathematically exact and has the advantage of having no explicit streamwise gradient terms. It is applicable for flows that change rapidly in the streamwise direction and, in particular, to flows with ill-defined outer boundary conditions or when the measurement grid does not extend over the whole boundary layer thickness. The method is applied to two different experimental plane turbulent wall jet data sets for which independent estimates of wall shear stress were known, and the different results compare favorably. Complications owing to experimental limitations and measurement error in determining wall shear stress from the proposed method are presented, and mitigating strategies are described. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

On determining wall shear stress in spatially developing two-dimensional wall-bounded flows

Loading next page...
 
/lp/springer_journal/on-determining-wall-shear-stress-in-spatially-developing-two-rFLP9H628J
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-013-1656-6
Publisher site
See Article on Publisher Site

Abstract

A full momentum integral-based method for determining wall shear stress is presented. The method is mathematically exact and has the advantage of having no explicit streamwise gradient terms. It is applicable for flows that change rapidly in the streamwise direction and, in particular, to flows with ill-defined outer boundary conditions or when the measurement grid does not extend over the whole boundary layer thickness. The method is applied to two different experimental plane turbulent wall jet data sets for which independent estimates of wall shear stress were known, and the different results compare favorably. Complications owing to experimental limitations and measurement error in determining wall shear stress from the proposed method are presented, and mitigating strategies are described.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 31, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off