# On Bonisoli’s theorem and the block codes of Steiner triple systems

On Bonisoli’s theorem and the block codes of Steiner triple systems A famous result of Bonisoli characterizes the equidistant linear codes over $${\mathrm{GF}}(q)$$ GF ( q ) (up to monomial equivalence) as replications of some q-ary simplex code, possibly with added 0-coordinates. We first prove a variation of this theorem which characterizes the replications of first order generalized Reed–Muller codes among the two-weight linear codes. In the second part of this paper, we use Bonisoli’s theorem and our variation to study the linear block codes of Steiner triple systems, which can only be non-trivial in the binary and ternary case. Assmus proved that the block by point incidence matrices of all Steiner triple systems on v points which have the same 2-rank generate equivalent binary codes and gave an explicit description of a generator matrix for such a code. We provide an alternative, considerably simpler, proof for these results by constructing parity check matrices for the binary codes spanned by the incidence matrix of a Steiner triple system instead, and we also obtain analogues for the ternary case. Moreover, we give simple alternative coding theoretical proofs for the lower bounds of Doyen, Hubaut and Vandensavel on the 2- and 3-ranks of Steiner triple systems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Designs, Codes and Cryptography Springer Journals

# On Bonisoli’s theorem and the block codes of Steiner triple systems

, Volume 86 (3) – Sep 2, 2017
14 pages

/lp/springer_journal/on-bonisoli-s-theorem-and-the-block-codes-of-steiner-triple-systems-usqX4NnTHf
Publisher
Springer Journals
Subject
Mathematics; Combinatorics; Coding and Information Theory; Data Structures, Cryptology and Information Theory; Data Encryption; Discrete Mathematics in Computer Science; Information and Communication, Circuits
ISSN
0925-1022
eISSN
1573-7586
D.O.I.
10.1007/s10623-017-0406-9
Publisher site
See Article on Publisher Site

### Abstract

A famous result of Bonisoli characterizes the equidistant linear codes over $${\mathrm{GF}}(q)$$ GF ( q ) (up to monomial equivalence) as replications of some q-ary simplex code, possibly with added 0-coordinates. We first prove a variation of this theorem which characterizes the replications of first order generalized Reed–Muller codes among the two-weight linear codes. In the second part of this paper, we use Bonisoli’s theorem and our variation to study the linear block codes of Steiner triple systems, which can only be non-trivial in the binary and ternary case. Assmus proved that the block by point incidence matrices of all Steiner triple systems on v points which have the same 2-rank generate equivalent binary codes and gave an explicit description of a generator matrix for such a code. We provide an alternative, considerably simpler, proof for these results by constructing parity check matrices for the binary codes spanned by the incidence matrix of a Steiner triple system instead, and we also obtain analogues for the ternary case. Moreover, we give simple alternative coding theoretical proofs for the lower bounds of Doyen, Hubaut and Vandensavel on the 2- and 3-ranks of Steiner triple systems.

### Journal

Designs, Codes and CryptographySpringer Journals

Published: Sep 2, 2017

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month ### Explore the DeepDyve Library ### Search Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly ### Organize Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place. ### Access Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals. ### Your journals are on DeepDyve Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more. All the latest content is available, no embargo periods. DeepDyve ### Freelancer DeepDyve ### Pro Price FREE$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations