On applying hash filters to improving the execution of multi-join queries

On applying hash filters to improving the execution of multi-join queries In this paper, we explore an approach of interleaving a bushy execution tree with hash filters to improve the execution of multi-join queries. Similar to semi-joins in distributed query processing, hash filters can be applied to eliminate non-matching tuples from joining relations before the execution of a join, thus reducing the join cost. Note that hash filters built in different execution stages of a bushy tree can have different costs and effects. The effect of hash filters is evaluat ed first. Then, an efficient scheme to determine an effective sequence of hash filters for a bushy execution tree is developed, where hash filters are built and applied based on the join sequence specified in the bushy tree so that not only is the reduction effect optimized but also the cost associated is minimized. Various schemes using hash filters are implemented and evaluated via simulation. It is experimentally shown that the application of hash filters is in general a very powerful means to improve th e execution of multi-join queries, and the improvement becomes more prominent as the number of relations in a query increases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

On applying hash filters to improving the execution of multi-join queries

Loading next page...
 
/lp/springer_journal/on-applying-hash-filters-to-improving-the-execution-of-multi-join-HPeZjBj6jC
Publisher
Springer Journals
Copyright
Copyright © 1997 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780050036
Publisher site
See Article on Publisher Site

Abstract

In this paper, we explore an approach of interleaving a bushy execution tree with hash filters to improve the execution of multi-join queries. Similar to semi-joins in distributed query processing, hash filters can be applied to eliminate non-matching tuples from joining relations before the execution of a join, thus reducing the join cost. Note that hash filters built in different execution stages of a bushy tree can have different costs and effects. The effect of hash filters is evaluat ed first. Then, an efficient scheme to determine an effective sequence of hash filters for a bushy execution tree is developed, where hash filters are built and applied based on the join sequence specified in the bushy tree so that not only is the reduction effect optimized but also the cost associated is minimized. Various schemes using hash filters are implemented and evaluated via simulation. It is experimentally shown that the application of hash filters is in general a very powerful means to improve th e execution of multi-join queries, and the improvement becomes more prominent as the number of relations in a query increases.

Journal

The VLDB JournalSpringer Journals

Published: May 1, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off