Oligosaccharide Inhibits Ethylene Synthesis and Stimulates Somatic Embryogenesis in a Cotton Cell Culture

Oligosaccharide Inhibits Ethylene Synthesis and Stimulates Somatic Embryogenesis in a Cotton Cell... The effect of a three-component oligosaccharide fragment of xyloglucan FucGalXyl (XG3) on callus-tissue growth and somatic embryogenesis was investigated in a cotton (Gossypium hirsutumL.) cell suspension culture. The oligosaccharide introduced into an induction medium at 10–8and 10–7M concentrations did not affect the frequency of callus formation from hypocotyl segments; however, it enhanced the monthly increment of callus-tissue weight 1.5- and 3-fold, respectively. Induction and culturing of the callus on an XG3-containing medium adversely affected its morphogenetic potential. Addition of XG3 to the culture medium during the cell suspension preparation stimulated cell division resulting, after 40 days, in a 3.4-fold (at 10–8M XG3) and a 1.7-fold (at 10–7M XG3) increase in the cell number as compared to the control. Exclusion of 2,4-D, kinetin, and oligosaccharide from the culture medium caused, after two weeks, a 3.8-fold increase in the number of embryos in the 10–7M XG3-treated suspension culture as compared to the control. The stimulation of somatic embryogenesis by the oligosaccharide was accompanied by a 12-fold decrease in ethylene emission. The morphogenetic effect of oligosaccharide is suggested to result from its anti-auxin action, which, in particular, inhibited the auxin-dependent ethylene synthesis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Oligosaccharide Inhibits Ethylene Synthesis and Stimulates Somatic Embryogenesis in a Cotton Cell Culture

Loading next page...
 
/lp/springer_journal/oligosaccharide-inhibits-ethylene-synthesis-and-stimulates-somatic-X8axba7ZpP
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1016760019737
Publisher site
See Article on Publisher Site

Abstract

The effect of a three-component oligosaccharide fragment of xyloglucan FucGalXyl (XG3) on callus-tissue growth and somatic embryogenesis was investigated in a cotton (Gossypium hirsutumL.) cell suspension culture. The oligosaccharide introduced into an induction medium at 10–8and 10–7M concentrations did not affect the frequency of callus formation from hypocotyl segments; however, it enhanced the monthly increment of callus-tissue weight 1.5- and 3-fold, respectively. Induction and culturing of the callus on an XG3-containing medium adversely affected its morphogenetic potential. Addition of XG3 to the culture medium during the cell suspension preparation stimulated cell division resulting, after 40 days, in a 3.4-fold (at 10–8M XG3) and a 1.7-fold (at 10–7M XG3) increase in the cell number as compared to the control. Exclusion of 2,4-D, kinetin, and oligosaccharide from the culture medium caused, after two weeks, a 3.8-fold increase in the number of embryos in the 10–7M XG3-treated suspension culture as compared to the control. The stimulation of somatic embryogenesis by the oligosaccharide was accompanied by a 12-fold decrease in ethylene emission. The morphogenetic effect of oligosaccharide is suggested to result from its anti-auxin action, which, in particular, inhibited the auxin-dependent ethylene synthesis.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off