Oleanolic acid and ursolic acid as potential inhibitors of human salivary α-amylase: insights from in vitro assays and in silico simulations

Oleanolic acid and ursolic acid as potential inhibitors of human salivary α-amylase: insights... It is known that inhibiting α-amylase, an important enzyme in digestion of starch and glycogen, is a useful strategy for treating disorders in carbohydrate uptake. Two natural components distributed in many fruits and plants, oleanolic acid and ursolic acid, are endowed with important pharmacological activities and wide therapeutic possibilities. Until now, only a tiny fraction of their applications have been identified and exploited. Our in vitro inhibition studies demonstrated that oleanolic acid and ursolic acid non-competitively inhibit the activity and function of human salivary α-amylase. The molecular simulations revealed that oleanolic acid and ursolic acid interact with amino acid residues within the binding pocket of human salivary α-amylase, among which the side chain of Arg195 and Asp 197 was supposed to be important in imparting the inhibitory activity of triterpenoids. The present work will provide meaningful information for future development of functional drugs for the treatment of disorders in carbohydrate metabolism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Molecular Modeling Springer Journals

Oleanolic acid and ursolic acid as potential inhibitors of human salivary α-amylase: insights from in vitro assays and in silico simulations

Loading next page...
 
/lp/springer_journal/oleanolic-acid-and-ursolic-acid-as-potential-inhibitors-of-human-zS1qygFVhr
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Chemistry; Computer Applications in Chemistry; Molecular Medicine; Computer Appl. in Life Sciences; Characterization and Evaluation of Materials; Theoretical and Computational Chemistry
ISSN
1610-2940
eISSN
0948-5023
D.O.I.
10.1007/s00894-017-3416-7
Publisher site
See Article on Publisher Site

Abstract

It is known that inhibiting α-amylase, an important enzyme in digestion of starch and glycogen, is a useful strategy for treating disorders in carbohydrate uptake. Two natural components distributed in many fruits and plants, oleanolic acid and ursolic acid, are endowed with important pharmacological activities and wide therapeutic possibilities. Until now, only a tiny fraction of their applications have been identified and exploited. Our in vitro inhibition studies demonstrated that oleanolic acid and ursolic acid non-competitively inhibit the activity and function of human salivary α-amylase. The molecular simulations revealed that oleanolic acid and ursolic acid interact with amino acid residues within the binding pocket of human salivary α-amylase, among which the side chain of Arg195 and Asp 197 was supposed to be important in imparting the inhibitory activity of triterpenoids. The present work will provide meaningful information for future development of functional drugs for the treatment of disorders in carbohydrate metabolism.

Journal

Journal of Molecular ModelingSpringer Journals

Published: Aug 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off