OH radical reactions with ethanolamines: formation of reducing as well as oxidizing radicals

OH radical reactions with ethanolamines: formation of reducing as well as oxidizing radicals OH radical reactions with ethanolamine, diethanolamine and triethanolamine were studied at pH values below and above the pKa values of these compounds. The rate constants were found to be lower for the protonated amines than those for their neutral forms. The OH radical reaction led to the formation of both oxidizing, as well as reducing species, as observed by their reactions with methyl viologen and ascorbic acid. The oxidizing species formed by OH radical reaction at the amine site was not found to react with the parent molecules and thereby no secondary yield of reducing species was obtained, as in the case of glycine (except in the case of triethanolamine at pH 9.2). http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

OH radical reactions with ethanolamines: formation of reducing as well as oxidizing radicals

Loading next page...
 
/lp/springer_journal/oh-radical-reactions-with-ethanolamines-formation-of-reducing-as-well-qPLGcBDLZm
Publisher
Brill Academic Publishers
Copyright
Copyright © 2004 by VSP
Subject
Chemistry; Inorganic Chemistry; Physical Chemistry; Catalysis
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1163/1568567042420758
Publisher site
See Article on Publisher Site

Abstract

OH radical reactions with ethanolamine, diethanolamine and triethanolamine were studied at pH values below and above the pKa values of these compounds. The rate constants were found to be lower for the protonated amines than those for their neutral forms. The OH radical reaction led to the formation of both oxidizing, as well as reducing species, as observed by their reactions with methyl viologen and ascorbic acid. The oxidizing species formed by OH radical reaction at the amine site was not found to react with the parent molecules and thereby no secondary yield of reducing species was obtained, as in the case of glycine (except in the case of triethanolamine at pH 9.2).

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Nov 1, 2004

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off