OGSO-DR: oppositional group search optimizer based efficient disaster recovery in a cloud environment

OGSO-DR: oppositional group search optimizer based efficient disaster recovery in a cloud... In cloud computing, enormous information storage is one of the great challenging tasks in term of reliable storage of sensitive data and quality of storage service. Among different cloud security issues, the data disaster recovery is the most critical issue. The motive of recovery technique is to help the user to collect data from any backup server when server lost his data and unable to provide data to the user. To achieve this purpose, many types of research develop different techniques. Therefore, in this paper, we propose a data disaster recovery process using Oppositional Group search optimizer (OGSO) algorithm which is mainly avoid the disaster in the cloud. The proposed data recovery process consists of four modules such as (1) file uploading module, (2) replica generation module, (3) data backup module and (4) disaster recovery module. At first, we split the data into a number of files and upload the file to the corresponding virtual machine using OGSO algorithm. After that, we generate the replica based on each file bandwidth. The replica is mainly used for data backup strategy. Finally, the user query based files are backup and retrieve based on replicas. The experimental results show that the proposed http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Ambient Intelligence and Humanized Computing Springer Journals

OGSO-DR: oppositional group search optimizer based efficient disaster recovery in a cloud environment

Loading next page...
 
/lp/springer_journal/ogso-dr-oppositional-group-search-optimizer-based-efficient-disaster-ld0Yf7M3kP
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Robotics and Automation; User Interfaces and Human Computer Interaction
ISSN
1868-5137
eISSN
1868-5145
D.O.I.
10.1007/s12652-018-0781-8
Publisher site
See Article on Publisher Site

Abstract

In cloud computing, enormous information storage is one of the great challenging tasks in term of reliable storage of sensitive data and quality of storage service. Among different cloud security issues, the data disaster recovery is the most critical issue. The motive of recovery technique is to help the user to collect data from any backup server when server lost his data and unable to provide data to the user. To achieve this purpose, many types of research develop different techniques. Therefore, in this paper, we propose a data disaster recovery process using Oppositional Group search optimizer (OGSO) algorithm which is mainly avoid the disaster in the cloud. The proposed data recovery process consists of four modules such as (1) file uploading module, (2) replica generation module, (3) data backup module and (4) disaster recovery module. At first, we split the data into a number of files and upload the file to the corresponding virtual machine using OGSO algorithm. After that, we generate the replica based on each file bandwidth. The replica is mainly used for data backup strategy. Finally, the user query based files are backup and retrieve based on replicas. The experimental results show that the proposed

Journal

Journal of Ambient Intelligence and Humanized ComputingSpringer Journals

Published: May 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off