OEP80, an essential protein paralogous to the chloroplast protein translocation channel Toc75, exists as a 70-kD protein in the Arabidopsis thaliana chloroplast outer envelope

OEP80, an essential protein paralogous to the chloroplast protein translocation channel Toc75,... Toc75 and OEP80 are paralogous proteins found in the Viridiplantae lineages, and appear to have evolved from a protein in the outer membrane of an ancient cyanobacterium. Toc75 is known to act as a protein translocation channel at the outer membrane of the chloroplast envelope, whereas the exact function of OEP80 is not understood. In Arabidopsis thaliana, each protein is encoded by a single gene, and both are essential for plant viability from embryonic stages onward. Sequence annotation and immunoblotting data with an antibody against its internal sequence (αOEP80325–337) indicated that the molecular weight of OEP80 is ca. 80 kD. Here we present multiple data to show that the size of A. thaliana OEP80 is smaller than previously estimated. First, we prepared the antibody against a recombinant protein consisting of annotated full-length A. thaliana OEP80 with an N-terminal hexahistidine tag (αOEP801–732). This antibody recognized a 70-kD protein in the A. thaliana chloroplast membrane fraction which migrated faster than the His-tagged antigen and the protein recognized by the αOEP80325–337 antibody on SDS-PAGE. Immunoprecipitation followed by LC–MS/MS analysis confirmed that the 70-kD protein was encoded by the OEP80 cDNA. Next, we performed a genetic complementation assay using embryo-lethal oep80-null plants and constructs encoding OEP80 and its variants. The results revealed that the nucleotide sequence encoding the 52 N-terminal amino acids was not required for functional expression of OEP80 and accumulation of the 70-kD protein. The data also indicated that an additional C-terminal T7 tag remained intact without disrupting the functionality of OEP80, and was not exposed to the cytoplasmic surface of the chloroplast envelope. Finally, OEP80-T7 and Toc75 showed distinct migration patterns on blue native-PAGE. This study provides molecular tools to investigate the function of OEP80, and also calls for caution in using an anti-peptide antibody. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

OEP80, an essential protein paralogous to the chloroplast protein translocation channel Toc75, exists as a 70-kD protein in the Arabidopsis thaliana chloroplast outer envelope

Loading next page...
 
/lp/springer_journal/oep80-an-essential-protein-paralogous-to-the-chloroplast-protein-b90BWYZfug
Publisher
Springer Netherlands
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9853-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial