Ocular defects associated with a null mutation in the mouse arylamine N-acetyltransferase 2 gene

Ocular defects associated with a null mutation in the mouse arylamine N-acetyltransferase 2 gene The xenobiotic metabolizing enzyme, mouse arylamine N-acetyltransferase type 2 (Nat2), is expressed during embryogenesis from the blastocyst stage and in the developing neural tube and eye. Mouse Nat2 is widely believed to have an endogenous role distinct from xenobiotic metabolism, and polymorphisms in the human ortholog have been implicated in susceptibility to spina bifida and orofacial clefting. The developmental role of Nat2 was investigated using transgenic Nat2 knockout/lacZ knockin (Nat2 tm1Esim) mice. The transgene was bred onto an A/J background and offspring were scored for developmental defects at weaning. After backcross generation eight, an ocular defect, ranging from cataract to microphthalmia and anophthalmia, was recorded among offspring of backcross and intercross pairs. Histologic analysis of cataract cases revealed a failure of the lens to separate from the cornea and plaques within the lens tissue. While Nat2 −/− mice have been described as overtly aphenotypic, the presence of a Nat2 null allele in one or both parents can result in ocular defects. These ocular phenotypes and their association with Nat2 genotype indicate that the Nat2 locus may be responsible for the previously described microphthalmic Cat4 phenotype and implicate the orthologous human NAT as a phenotypic modifier of microphthalmia and anophthalmia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Ocular defects associated with a null mutation in the mouse arylamine N-acetyltransferase 2 gene

Loading next page...
 
/lp/springer_journal/ocular-defects-associated-with-a-null-mutation-in-the-mouse-arylamine-lPCI04Yodk
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Zoology ; Anatomy ; Cell Biology
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s00335-007-9010-z
Publisher site
See Article on Publisher Site

Abstract

The xenobiotic metabolizing enzyme, mouse arylamine N-acetyltransferase type 2 (Nat2), is expressed during embryogenesis from the blastocyst stage and in the developing neural tube and eye. Mouse Nat2 is widely believed to have an endogenous role distinct from xenobiotic metabolism, and polymorphisms in the human ortholog have been implicated in susceptibility to spina bifida and orofacial clefting. The developmental role of Nat2 was investigated using transgenic Nat2 knockout/lacZ knockin (Nat2 tm1Esim) mice. The transgene was bred onto an A/J background and offspring were scored for developmental defects at weaning. After backcross generation eight, an ocular defect, ranging from cataract to microphthalmia and anophthalmia, was recorded among offspring of backcross and intercross pairs. Histologic analysis of cataract cases revealed a failure of the lens to separate from the cornea and plaques within the lens tissue. While Nat2 −/− mice have been described as overtly aphenotypic, the presence of a Nat2 null allele in one or both parents can result in ocular defects. These ocular phenotypes and their association with Nat2 genotype indicate that the Nat2 locus may be responsible for the previously described microphthalmic Cat4 phenotype and implicate the orthologous human NAT as a phenotypic modifier of microphthalmia and anophthalmia.

Journal

Mammalian GenomeSpringer Journals

Published: May 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off