Octamer and heat shock elements regulate transcription from the Ac MNPV polyhedrin gene promoter

Octamer and heat shock elements regulate transcription from the Ac MNPV polyhedrin gene promoter The baculovirus expression vector system exploits the polyhedrin ( polh ) promoter for high expression of foreign proteins in insect cells. The mechanism of basal and hyperactivated transcription from this promoter, however, remains poorly understood. We have analyzed the 4-kb upstream region of the polh promoter; deletion of two separate parts of the 4-kb upstream region, harboring the Oct binding site and the heat shock element, respectively, resulted in significant reduction of reporter gene expression regulated by the polh promoter. Insect cell host factors could bind to these elements in vitro. Moreover, these elements could activate polh transcription during viral infection when present upstream of a minimal polh promoter in transient expression reporter assays. Our results suggest the possible existence of transcription factors belonging to the POU and heat shock transcription factor family in Spodoptera frugiperda cells and support the hypothesis that host proteins may play a major role in activating transcription from the polh promoter. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Octamer and heat shock elements regulate transcription from the Ac MNPV polyhedrin gene promoter

Loading next page...
 
/lp/springer_journal/octamer-and-heat-shock-elements-regulate-transcription-from-the-ac-OlUZqK5t58
Publisher
Springer Journals
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Biomedicine; Infectious Diseases; Medical Microbiology ; Virology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-009-0324-x
Publisher site
See Article on Publisher Site

Abstract

The baculovirus expression vector system exploits the polyhedrin ( polh ) promoter for high expression of foreign proteins in insect cells. The mechanism of basal and hyperactivated transcription from this promoter, however, remains poorly understood. We have analyzed the 4-kb upstream region of the polh promoter; deletion of two separate parts of the 4-kb upstream region, harboring the Oct binding site and the heat shock element, respectively, resulted in significant reduction of reporter gene expression regulated by the polh promoter. Insect cell host factors could bind to these elements in vitro. Moreover, these elements could activate polh transcription during viral infection when present upstream of a minimal polh promoter in transient expression reporter assays. Our results suggest the possible existence of transcription factors belonging to the POU and heat shock transcription factor family in Spodoptera frugiperda cells and support the hypothesis that host proteins may play a major role in activating transcription from the polh promoter.

Journal

Archives of VirologySpringer Journals

Published: Mar 1, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off