Occludin Localization at the Tight Junction Requires the Second Extracellular Loop

Occludin Localization at the Tight Junction Requires the Second Extracellular Loop Occludin is a transmembrane protein of the tight junction with two extracellular loops. Our previous demonstration that the extracellular loops are adhesive suggested the possibility that they contribute to localizing occludin at the tight junction. To address this question, truncated forms of occludin were generated in which one or both of the extracellular loops were deleted. These constructs were expressed in both occludin-null Rat-1 fibroblasts and in MDCK epithelial cells. The patterns of sensitivity to proteinase K suggested all constructs were present on the plasma membrane and retained the normal topology. In fibroblasts, all truncated forms of occludin colocalized with ZO-1 at regions of cell-cell contact, demonstrating that even in the absence of tight junctions cytoplasmic interactions with ZOs is sufficient to cluster occludin. In MDCK cell monolayers, both full-length and occludin lacking the first extracellular loop colocalized with ZO-1 at the tight junction. In contrast, constructs lacking the second, or both, extracellular loops were absent from tight junctions and were found only on the basolateral cell surface. By freeze-fracture electron microscopic analysis, overexpression of full length occludin induced side-to-side aggregation of fibrils within the junction, while excess occludin on the lateral membrane did not form fibrils. These results suggest that the second extracellular domain is required for stable assembly of occludin in the tight junction and that occludin influences the structural organization of the paracellular barrier. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Occludin Localization at the Tight Junction Requires the Second Extracellular Loop

Loading next page...
 
/lp/springer_journal/occludin-localization-at-the-tight-junction-requires-the-second-VZNJYzD6jU
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320010031
Publisher site
See Article on Publisher Site

Abstract

Occludin is a transmembrane protein of the tight junction with two extracellular loops. Our previous demonstration that the extracellular loops are adhesive suggested the possibility that they contribute to localizing occludin at the tight junction. To address this question, truncated forms of occludin were generated in which one or both of the extracellular loops were deleted. These constructs were expressed in both occludin-null Rat-1 fibroblasts and in MDCK epithelial cells. The patterns of sensitivity to proteinase K suggested all constructs were present on the plasma membrane and retained the normal topology. In fibroblasts, all truncated forms of occludin colocalized with ZO-1 at regions of cell-cell contact, demonstrating that even in the absence of tight junctions cytoplasmic interactions with ZOs is sufficient to cluster occludin. In MDCK cell monolayers, both full-length and occludin lacking the first extracellular loop colocalized with ZO-1 at the tight junction. In contrast, constructs lacking the second, or both, extracellular loops were absent from tight junctions and were found only on the basolateral cell surface. By freeze-fracture electron microscopic analysis, overexpression of full length occludin induced side-to-side aggregation of fibrils within the junction, while excess occludin on the lateral membrane did not form fibrils. These results suggest that the second extracellular domain is required for stable assembly of occludin in the tight junction and that occludin influences the structural organization of the paracellular barrier.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Dec 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off